A state space modeling approach to real-time phase estimation

  1. Anirudh Wodeyar  Is a corresponding author
  2. Mark Schatza
  3. Alik S Widge
  4. Uri T Eden
  5. Mark A Kramer
  1. Boston University, United States
  2. University of Minnesota, United States

Abstract

Brain rhythms have been proposed to facilitate brain function, with an especially important role attributed to the phase of low frequency rhythms. Understanding the role of phase in neural function requires interventions that perturb neural activity at a target phase, necessitating estimation of phase in real-time. Current methods for real-time phase estimation rely on bandpass filtering, which assumes narrowband signals and couples the signal and noise in the phase estimate, adding noise to the phase and impairing detections of relationships between phase and behavior. To address this, we propose a state space phase estimator for real-time tracking of phase. By tracking the analytic signal as a latent state, this framework avoids the requirement of bandpass filtering, separately models the signal and the noise, accounts for rhythmic confounds, and provides credible intervals for the phase estimate. We demonstrate in simulations that the state space phase estimator outperforms current state-of-the-art real-time methods in the contexts of common confounds such as broadband rhythms, phase resets and co-occurring rhythms. Finally, we show applications of this approach to in vivo data. The method is available as a ready-to-use plug-in for the OpenEphys acquisition system, making it widely available for use in experiments.

Data availability

All data generated or analyzed during this study, or were used to create the figures are included in the supporting files, or are available through already public data archives (https://gin.g-node.org/bnplab/phastimate, 10.6084/m9.figshare.14374355).

The following previously published data sets were used
    1. Zrenner C
    2. Galevska D
    3. Nieminen JO
    4. Baur D
    5. Stefanou MI
    6. Ziemann U
    (2020) Phastimate
    https://gin.g-node.org/bnplab/phastimate/src/master/murhythmdataset.mat, https://doi.org/10.1016/j.neuroimage.2020.116761.

Article and author information

Author details

  1. Anirudh Wodeyar

    Mathematics and Statistics, Boston University, Boston, United States
    For correspondence
    wodeyar@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2577-5139
  2. Mark Schatza

    Department of Psychiatry, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alik S Widge

    Department of Psychiatry, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8510-341X
  4. Uri T Eden

    Department of Mathematics and Statistics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark A Kramer

    Department of Mathematics and Statistics, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01 EB026938)

  • Anirudh Wodeyar
  • Alik S Widge
  • Uri T Eden
  • Mark A Kramer

National Institutes of Health (R01 MH119384)

  • Alik S Widge

National Institutes of Health (R01 MH123634)

  • Alik S Widge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Wodeyar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,513
    views
  • 424
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anirudh Wodeyar
  2. Mark Schatza
  3. Alik S Widge
  4. Uri T Eden
  5. Mark A Kramer
(2021)
A state space modeling approach to real-time phase estimation
eLife 10:e68803.
https://doi.org/10.7554/eLife.68803

Share this article

https://doi.org/10.7554/eLife.68803

Further reading

    1. Neuroscience
    Jing Wang, Min Su ... Hailin Zhang
    Research Article

    The slow-intrinsic-pacemaker dopaminergic (DA) neurons originating in the ventral tegmental area (VTA) are implicated in various mood- and emotion-related disorders, such as anxiety, fear, stress and depression. Abnormal activity of projection-specific VTA DA neurons is the key factor in the development of these disorders. Here, we describe the crucial role of the NALCN and TRPC6, non-selective cation channels in mediating the subthreshold inward depolarizing current and driving the firing of action potentials of VTA DA neurons in physiological conditions. Furthermore, we demonstrate that down-regulation of TRPC6 protein expression in the VTA DA neurons likely contributes to the reduced activity of projection-specific VTA DA neurons in chronic mild unpredictable stress (CMUS) depressive mice. In consistent with these, selective knockdown of TRPC6 channels in the VTA DA neurons conferred mice with depression-like behavior. This current study suggests down-regulation of TRPC6 expression/function is involved in reduced VTA DA neuron firing and chronic stress-induced depression-like behavior of mice.

    1. Neuroscience
    Yongjun Li, Nitin S Chouhan ... Amita Sehgal
    Research Article

    Memory consolidation in Drosophila can be sleep-dependent or sleep-independent, depending on the availability of food. The anterior posterior (ap) alpha′/beta′ (α′/β′) neurons of the mushroom body (MB) are required for sleep-dependent memory consolidation in flies fed after training. These neurons are also involved in the increase of sleep after training, suggesting a coupling of sleep and memory. To better understand the mechanisms underlying sleep and memory consolidation initiation, we analyzed the transcriptome of ap α′/β′ neurons 1 hr after appetitive memory conditioning. A small number of genes, enriched in RNA processing functions, were differentially expressed in flies fed after training relative to trained and starved flies or untrained flies. Knockdown of each of these differentially expressed genes in the ap α′/β′ neurons revealed notable sleep phenotypes for Polr1F and Regnase-1, both of which decrease in expression after conditioning. Knockdown of Polr1F, a regulator of ribosome RNA transcription, in adult flies promotes sleep and increases pre-ribosome RNA expression as well as overall translation, supporting a function for Polr1F downregulation in sleep-dependent memory. Conversely, while constitutive knockdown of Regnase-1, an mRNA decay protein localized to the ribosome, reduces sleep, adult specific knockdown suggests that effects of Regnase-1 on sleep are developmental in nature. We further tested the role of each gene in memory consolidation. Knockdown of Polr1F does not affect memory, which may be expected from its downregulation during memory consolidation. Regnase-1 knockdown in ap α′/β′ neurons impairs all memory, including short-term, implicating Regnase-1 in memory, but leaving open the question of why it is downregulated during sleep-dependent memory. Overall, our findings demonstrate that the expression of RNA processing genes is modulated during sleep-dependent memory and, in the case of Polr1F, this modulation likely contributes to increased sleep.