PRMT5>regulates ovarian follicle development by facilitating Wt1 translation

  1. Min Chen
  2. Fangfang Dong
  3. Min Chen
  4. Zhiming Shen
  5. Haowei Wu
  6. Changhuo Cen
  7. Xiuhong Cui
  8. Shilai Bao
  9. Fei Gao  Is a corresponding author
  1. Institute of Zoology, Chinese Academy of Sciences, China
  2. Institute of Urology, Peking University Shenzhen Hospital, China
  3. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China

Abstract

Protein arginine methyltransferase 5 (Prmt5) is the major type II enzyme responsible for symmetric dimethylation of arginine. Here, we found PRMT5 was expressed at high level in ovarian granulosa cells of growing follicles. Inactivation of Prmt5 in granulosa cells resulted in aberrant follicle development and female infertility. In Prmt5-knockout mice, follicle development was arrested with disorganized granulosa cells in which WT1 expression was dramatically reduced and the expression of steroidogenesis-related genes was significantly increased. The premature differentiated granulosa cells were detached from oocytes and follicle structure was disrupted. Mechanism studies revealed that Wt1 expression was regulated by PRMT5 at the protein level. PRMT5 facilitated IRES-dependent translation of Wt1 mRNA by methylating HnRNPA1. Moreover, the upregulation of steroidogenic genes in Prmt5-deficient granulosa cells was repressed by Wt1 overexpression. These results demonstrate PRMT5 participates in granulosa cell lineage maintenance by inducing Wt1 expression. Our study uncovers a new role of post-translational arginine methylation in granulosa cell differentiation and follicle development.

Data availability

Our work did not generate any datasets or use any previously published datasets. Source data for Fig.4, 5, 6, 7 and figure supplement of Fig.1, Fig.5, Fig.6 have been provided.

Article and author information

Author details

  1. Min Chen

    State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Fangfang Dong

    State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Min Chen

    Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiming Shen

    State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Haowei Wu

    State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Changhuo Cen

    State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiuhong Cui

    State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shilai Bao

    State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Fei Gao

    State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    gaof@ioz.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4029-6411

Funding

Ministry of Science and Technology of the People's Republic of China (National key R&D program of China,2018YFC1004200)

  • Min Chen

Ministry of Science and Technology of the People's Republic of China (National key R&D program of China,2018YFA0107700)

  • Fei Gao

Chinese Academy of Sciences (Strategic Priority Research Program of the Chinese Academy of Sciences,XDB19000000)

  • Fei Gao

National Natural Science Foundation of China (The National Science Fund for Distinguished Young Scholars,81525011)

  • Fei Gao

National Natural Science Foundation of China (The National Natural Science Foundation of China,31970785,31601193,and 31671496))

  • Fei Gao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of Institute of Zoology, Chinese Academy of Sciences (CAS). All animal experiments were carried out in accordance with the protocols approved by the Institutional Animal Care and Use Committee at the Institute of Zoology, Chinese Academy of Sciences (CAS) (Permit Number: SYXK 2018-0021).

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,710
    views
  • 323
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Min Chen
  2. Fangfang Dong
  3. Min Chen
  4. Zhiming Shen
  5. Haowei Wu
  6. Changhuo Cen
  7. Xiuhong Cui
  8. Shilai Bao
  9. Fei Gao
(2021)
PRMT5>regulates ovarian follicle development by facilitating Wt1 translation
eLife 10:e68930.
https://doi.org/10.7554/eLife.68930

Share this article

https://doi.org/10.7554/eLife.68930

Further reading

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.

    1. Cell Biology
    Marjan Slak Rupnik
    Insight

    Functional subpopulations of β-cells emerge to control pulsative insulin secretion in the pancreatic islets of mice through calcium oscillations.