A mechanism with severing near barbed ends andannealing explains structure and dynamics of dendriticactin networks

  1. Danielle Holz
  2. Aaron R Hall
  3. Eiji Usukura
  4. Sawako Yamashiro
  5. Naoki Watanabe
  6. Dimitrios Vavylonis  Is a corresponding author
  1. Lehigh University, United States
  2. Kyoto University, Japan

Abstract

Single molecule imaging has shown that part of actin disassembles within a few seconds after incorporation into the dendritic filament network in lamellipodia, suggestive of frequent destabilization near barbed ends. To investigate the mechanisms behind network remodeling, we created a stochastic model with polymerization, depolymerization, branching, capping, uncapping, severing, oligomer diffusion, annealing, and debranching. We find that filament severing, enhanced near barbed ends, can explain the single molecule actin lifetime distribution, if oligomer fragments reanneal to free ends with rate constants comparable to in vitro measurements. The same mechanism leads to actin networks consistent with measured filament, end, and branch concentrations. These networks undergo structural remodeling, leading to longer filaments away from the leading edge, at the +/- 35𝑜 orientation pattern. Imaging of actin speckle lifetimes at sub-second resolution verifies frequent disassembly of newly-assembled actin. We thus propose a unified mechanism that fits a diverse set of basic lamellipodia phenomenology.

Data availability

All data reported in this project are present within the published figures and Supplemental Information. The code for simulations is available at https://github.com/vavylonis/LamellipodiumSeverAnnealand will allow for all simulation plots to be reproduced. The experimental SiMS data of Figure 6 and Figure 6-supplement 1 have been provided as excel files containing the speckle tracks using the SpeckleTrackerJ ImageJ plugin

The following data sets were generated

Article and author information

Author details

  1. Danielle Holz

    Department of Physics, Lehigh University, Bethlehem, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aaron R Hall

    Department of Physics, Lehigh University, Bethlehem, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eiji Usukura

    Laboratory of Single-Molecule Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Sawako Yamashiro

    Laboratory of Single-Molecule Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Naoki Watanabe

    Laboratory of Single-Molecule Cell Biology, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Dimitrios Vavylonis

    Department of Physics, Lehigh University, Bethlehem, United States
    For correspondence
    vavylonis@lehigh.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1802-3262

Funding

National Institutes of Health (R35GM136372)

  • Danielle Holz
  • Aaron R Hall
  • Eiji Usukura
  • Sawako Yamashiro
  • Naoki Watanabe
  • Dimitrios Vavylonis

National Institutes of Health (R01GM114201)

  • Danielle Holz
  • Aaron R Hall
  • Dimitrios Vavylonis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Holz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,009
    views
  • 219
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danielle Holz
  2. Aaron R Hall
  3. Eiji Usukura
  4. Sawako Yamashiro
  5. Naoki Watanabe
  6. Dimitrios Vavylonis
(2022)
A mechanism with severing near barbed ends andannealing explains structure and dynamics of dendriticactin networks
eLife 11:e69031.
https://doi.org/10.7554/eLife.69031

Share this article

https://doi.org/10.7554/eLife.69031

Further reading

    1. Cell Biology
    Jessica Y Chotiner, N Adrian Leu ... P Jeremy Wang
    Research Article

    Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.

    1. Cell Biology
    Johanna Odenwald, Bernardo Gabiatti ... Susanne Kramer
    Research Article

    Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an ‘all in one’ solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.