Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism

  1. James P Bridges
  2. Caterina Safina
  3. Bernard Pirard
  4. Kari Brown
  5. Alyssa Filuta
  6. Ravichandran Panchanathan
  7. Rochdi Bouhelal
  8. Nicole Reymann
  9. Sejal Patel
  10. Klaus Seuwen
  11. William E Miller
  12. Marie-Gabrielle Ludwig  Is a corresponding author
  1. Cincinnati Children's Hospital Medical Center, United States
  2. Novartis, Switzerland
  3. University of Cincinnati, United States
  4. Novartis, United States

Abstract

The mechanistic details of the tethered agonist mode of activation for the adhesion GPCR ADGRF5/GPR116 has not been completely deciphered. We set out to investigate the physiologic importance of autocatalytic cleavage upstream of the agonistic peptide sequence, an event necessary for NTF displacement and subsequent receptor activation. To examine this hypothesis, we characterized tethered agonist-mediated activation of GPR116 in vitro and in vivo. A knock-in mouse expressing a non-cleavable GPR116 mutant phenocopies the pulmonary phenotype of GPR116 knock-out mice, demonstrating that tethered agonist-mediated receptor activation is indispensable for function in vivo. Using site-directed mutagenesis and species swapping approaches we identified key conserved amino acids for GPR116 activation in the tethered agonist sequence and in extracellular loops 2/3 (ECL2/3). We further highlight residues in transmembrane7 (TM7) that mediate stronger signaling in mouse versus human GPR116 and recapitulate these findings in a model supporting tethered agonist:ECL2 interactions for GPR116 activation.

Data availability

Source data for the modeling is provided (coordinates of the model)

Article and author information

Author details

  1. James P Bridges

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  2. Caterina Safina

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Caterina Safina, is employed by and shareholder of Novartis Pharma AG..
  3. Bernard Pirard

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Bernard Pirard, is employed by and shareholder of Novartis Pharma AG..
  4. Kari Brown

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  5. Alyssa Filuta

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  6. Ravichandran Panchanathan

    Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    No competing interests declared.
  7. Rochdi Bouhelal

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Rochdi Bouhelal, is employed by and shareholder of Novartis Pharma AG..
  8. Nicole Reymann

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Nicole Reymann, is employed by and shareholders of Novartis Pharma AG.
  9. Sejal Patel

    Novartis Institutes for Biomedical Research, Novartis, Cambridge, United States
    Competing interests
    Sejal Patel, is employed by and shareholder of Novartis Pharma AG..
  10. Klaus Seuwen

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Klaus Seuwen, is employed by and shareholder of Novartis Pharma AG..
  11. William E Miller

    Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    No competing interests declared.
  12. Marie-Gabrielle Ludwig

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    For correspondence
    marie-gabrielle.ludwig@novartis.com
    Competing interests
    Marie-Gabrielle Ludwig, is employed by and shareholder of Novartis Pharma AG..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7799-4782

Funding

National Heart, Lung and Blood Institute of the NIH (HL131634)

  • Caterina Safina
  • Bernard Pirard

This work was funded in part by the NIH grant listed above.

Reviewing Editor

  1. Demet Araç, University of Chicago, United States

Ethics

Animal experimentation: All animal procedures were performed under protocols (AS2842_05_22; JPB) approved by the Institutional Animal Care and Use Committee of National Jewish Health in accordance with National Institutes of Health guidelines.

Version history

  1. Preprint posted: April 2, 2021 (view preprint)
  2. Received: April 2, 2021
  3. Accepted: September 7, 2022
  4. Accepted Manuscript published: September 8, 2022 (version 1)
  5. Version of Record published: September 20, 2022 (version 2)

Copyright

© 2022, Bridges et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 896
    Page views
  • 228
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James P Bridges
  2. Caterina Safina
  3. Bernard Pirard
  4. Kari Brown
  5. Alyssa Filuta
  6. Ravichandran Panchanathan
  7. Rochdi Bouhelal
  8. Nicole Reymann
  9. Sejal Patel
  10. Klaus Seuwen
  11. William E Miller
  12. Marie-Gabrielle Ludwig
(2022)
Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism
eLife 11:e69061.
https://doi.org/10.7554/eLife.69061

Share this article

https://doi.org/10.7554/eLife.69061

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.