Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism

  1. James P Bridges
  2. Caterina Safina
  3. Bernard Pirard
  4. Kari Brown
  5. Alyssa Filuta
  6. Ravichandran Panchanathan
  7. Rochdi Bouhelal
  8. Nicole Reymann
  9. Sejal Patel
  10. Klaus Seuwen
  11. William E Miller
  12. Marie-Gabrielle Ludwig  Is a corresponding author
  1. Cincinnati Children's Hospital Medical Center, United States
  2. Novartis, Switzerland
  3. University of Cincinnati, United States
  4. Novartis, United States

Abstract

The mechanistic details of the tethered agonist mode of activation for the adhesion GPCR ADGRF5/GPR116 has not been completely deciphered. We set out to investigate the physiologic importance of autocatalytic cleavage upstream of the agonistic peptide sequence, an event necessary for NTF displacement and subsequent receptor activation. To examine this hypothesis, we characterized tethered agonist-mediated activation of GPR116 in vitro and in vivo. A knock-in mouse expressing a non-cleavable GPR116 mutant phenocopies the pulmonary phenotype of GPR116 knock-out mice, demonstrating that tethered agonist-mediated receptor activation is indispensable for function in vivo. Using site-directed mutagenesis and species swapping approaches we identified key conserved amino acids for GPR116 activation in the tethered agonist sequence and in extracellular loops 2/3 (ECL2/3). We further highlight residues in transmembrane7 (TM7) that mediate stronger signaling in mouse versus human GPR116 and recapitulate these findings in a model supporting tethered agonist:ECL2 interactions for GPR116 activation.

Data availability

Source data for the modeling is provided (coordinates of the model)

Article and author information

Author details

  1. James P Bridges

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  2. Caterina Safina

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Caterina Safina, is employed by and shareholder of Novartis Pharma AG..
  3. Bernard Pirard

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Bernard Pirard, is employed by and shareholder of Novartis Pharma AG..
  4. Kari Brown

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  5. Alyssa Filuta

    Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    No competing interests declared.
  6. Ravichandran Panchanathan

    Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    No competing interests declared.
  7. Rochdi Bouhelal

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Rochdi Bouhelal, is employed by and shareholder of Novartis Pharma AG..
  8. Nicole Reymann

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Nicole Reymann, is employed by and shareholders of Novartis Pharma AG.
  9. Sejal Patel

    Novartis Institutes for Biomedical Research, Novartis, Cambridge, United States
    Competing interests
    Sejal Patel, is employed by and shareholder of Novartis Pharma AG..
  10. Klaus Seuwen

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    Competing interests
    Klaus Seuwen, is employed by and shareholder of Novartis Pharma AG..
  11. William E Miller

    Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    No competing interests declared.
  12. Marie-Gabrielle Ludwig

    Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland
    For correspondence
    marie-gabrielle.ludwig@novartis.com
    Competing interests
    Marie-Gabrielle Ludwig, is employed by and shareholder of Novartis Pharma AG..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7799-4782

Funding

National Heart, Lung and Blood Institute of the NIH (HL131634)

  • Caterina Safina
  • Bernard Pirard

This work was funded in part by the NIH grant listed above.

Reviewing Editor

  1. Demet Araç, University of Chicago, United States

Ethics

Animal experimentation: All animal procedures were performed under protocols (AS2842_05_22; JPB) approved by the Institutional Animal Care and Use Committee of National Jewish Health in accordance with National Institutes of Health guidelines.

Version history

  1. Preprint posted: April 2, 2021 (view preprint)
  2. Received: April 2, 2021
  3. Accepted: September 7, 2022
  4. Accepted Manuscript published: September 8, 2022 (version 1)
  5. Version of Record published: September 20, 2022 (version 2)

Copyright

© 2022, Bridges et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 990
    views
  • 240
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James P Bridges
  2. Caterina Safina
  3. Bernard Pirard
  4. Kari Brown
  5. Alyssa Filuta
  6. Ravichandran Panchanathan
  7. Rochdi Bouhelal
  8. Nicole Reymann
  9. Sejal Patel
  10. Klaus Seuwen
  11. William E Miller
  12. Marie-Gabrielle Ludwig
(2022)
Regulation of pulmonary surfactant by the adhesion GPCR GPR116/ADGRF5 requires a tethered agonist-mediated activation mechanism
eLife 11:e69061.
https://doi.org/10.7554/eLife.69061

Share this article

https://doi.org/10.7554/eLife.69061

Further reading

    1. Cell Biology
    Elizabeth A Beath, Cynthia Bailey ... Francis J McNally
    Research Article

    Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.