Causal roles of prefrontal cortex during spontaneous perceptual switching are determined by brain state dynamics
Abstract
The prefrontal cortex (PFC) is thought to orchestrate cognitive dynamics. However, in tests of bistable visual perception, no direct evidence supporting such presumable causal roles of the PFC has been reported. Here, using a novel brain-state-dependent neural stimulation system, we identified causal effects on percept dynamics in three PFC activities-right frontal eye fields, dorsolateral PFC (DLPFC) and inferior frontal cortex (IFC)-. The causality is behaviourally detectable only when we track brain state dynamics and modulate the PFC activity in brain-state-/state-history-dependent manners. The behavioural effects are underpinned by transient neural changes in the brain state dynamics, and such neural effects are quantitatively explainable by structural transformations of the hypothetical energy landscapes. Moreover, these findings indicate distinct functions of the three PFC areas: in particular, the DLPFC enhances the integration of two PFC-active brain states, whereas IFC promotes the functional segregation between them. This work resolves the controversy over the PFC roles in spontaneous perceptual switching and underlines brain state dynamics in fine investigations of brain-behaviour causality.
Data availability
The behavioural data are deposited in Dryrad (https://doi.org/10.5061/dryad.8931zcrqn) and the codes for the energy landscape analysis has been shared as a supplementary information of our previous work (Ezaki, T., Watanabe, T., Ohzeki, M. & Masuda, N. Energy landscape analysis of neuroimaging data. Philosophical Transactions Royal Soc Math Phys Eng Sci 375, 20160287 (2017), https://doi.org/10.1098/rsta.2016.0287).
-
Data from: Causal roles of prefrontal cortex during spontaneous perceptual switching are determined by brain state dynamicsDryad Digital Repository, doi:10.5061/dryad.8931zcrqn.
Article and author information
Author details
Funding
Japan Society for the Promotion of Science (19H03535)
- Takamitsu Watanabe
Japan Science and Technology Agency (JPMJMS2021)
- Takamitsu Watanabe
Astellas Foundation for Research on Metabolic Disorders
- Takamitsu Watanabe
Fukuhara Foundation
- Takamitsu Watanabe
Yamaha Motor Foundation of Sports
- Takamitsu Watanabe
Showa University Medical Institute of Developmental Disabilities Research
- Takamitsu Watanabe
The University of Tokyo Excellent Young Researcher Project
- Takamitsu Watanabe
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was approved by Institutional Ethics Committees in RIKEN and The University of Tokyo. The TMS protocols used here complied with the guideline issued by the Japanese Society for Clinical Neurophysiology and that by International Federation of Clinical Neurophysiology. All the participants provided written informed consents before any experiment and were financially compensated for their participation.
Copyright
© 2021, Watanabe
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,295
- views
-
- 445
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.
-
- Neuroscience
Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.