N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2
Abstract
SARS-CoV-2 is spreading around the world for the past year. Recently, several variants such as B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma), sharing a key mutation N501Y on the RBD, appear to be more infectious to humans. To understand the underlying mechanism, we performed cell surface binding assay, kinetics study, single-molecule technique, and computational method to investigate the interaction between these RBD (mutations) and ACE2. Remarkably, RBD with the N501Y mutation exhibited a considerably stronger interaction, with a faster association rate and slower dissociation rate. Consistently, atomic force microscopy-based single-molecule force microscopy quantifies their strength showing a higher binding probability and unbinding force for the mutation. Molecular dynamics simulations of RBD-ACE2 complexes indicated that the N501Y introduced additional π-π and π-cation interaction for the higher force/interaction. Taken together, we suggested that the reinforced interaction from N501Y mutation in RBD should play an essential role in the higher transmission of SARS-CoV-2 variants and future mutations in the RBD of the virus should be under surveillance.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have provided for Figures 1-4.
Article and author information
Author details
Funding
National Key Research and Development Program of China (2020YFA0509000)
- Xianchi Dong
Fundamental Research Funds for the Central Universities (14380205)
- Peng Zheng
Natural Science Foundation of Jiangsu Province (BK20200058)
- Peng Zheng
Natural Science Foundation of Jiangsu Province (BK20202004)
- Peng Zheng
Natural Science Foundation of Jiangsu Province (BK20190275)
- Xianchi Dong
National Natural Science Foundation of China (21771103)
- Peng Zheng
National Natural Science Foundation of China (21977047)
- Peng Zheng
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Tian et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,780
- views
-
- 927
- downloads
-
- 264
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Nature has inspired the design of improved inhibitors for cancer-causing proteins.
-
- Structural Biology and Molecular Biophysics
Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.