N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2

  1. Fang Tian
  2. Bei Tong  Is a corresponding author
  3. Liang Sun
  4. Shengchao Shi
  5. Bin Zheng
  6. Zibin Wang
  7. Xianchi Dong  Is a corresponding author
  8. Peng Zheng  Is a corresponding author
  1. Nanjing University, China
  2. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, China

Abstract

SARS-CoV-2 is spreading around the world for the past year. Recently, several variants such as B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma), sharing a key mutation N501Y on the RBD, appear to be more infectious to humans. To understand the underlying mechanism, we performed cell surface binding assay, kinetics study, single-molecule technique, and computational method to investigate the interaction between these RBD (mutations) and ACE2. Remarkably, RBD with the N501Y mutation exhibited a considerably stronger interaction, with a faster association rate and slower dissociation rate. Consistently, atomic force microscopy-based single-molecule force microscopy quantifies their strength showing a higher binding probability and unbinding force for the mutation. Molecular dynamics simulations of RBD-ACE2 complexes indicated that the N501Y introduced additional π-π and π-cation interaction for the higher force/interaction. Taken together, we suggested that the reinforced interaction from N501Y mutation in RBD should play an essential role in the higher transmission of SARS-CoV-2 variants and future mutations in the RBD of the virus should be under surveillance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have provided for Figures 1-4.

Article and author information

Author details

  1. Fang Tian

    School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Bei Tong

    Institute of Botany, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
    For correspondence
    beitong@cnbg.net
    Competing interests
    The authors declare that no competing interests exist.
  3. Liang Sun

    School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Shengchao Shi

    Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Bin Zheng

    Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Zibin Wang

    School of Life Sciences, Nanjing University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xianchi Dong

    School of Life Sciences, Nanjing University, Nanjing, China
    For correspondence
    xianchidong@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  8. Peng Zheng

    Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
    For correspondence
    pengz@nju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4792-6364

Funding

National Key Research and Development Program of China (2020YFA0509000)

  • Xianchi Dong

Fundamental Research Funds for the Central Universities (14380205)

  • Peng Zheng

Natural Science Foundation of Jiangsu Province (BK20200058)

  • Peng Zheng

Natural Science Foundation of Jiangsu Province (BK20202004)

  • Peng Zheng

Natural Science Foundation of Jiangsu Province (BK20190275)

  • Xianchi Dong

National Natural Science Foundation of China (21771103)

  • Peng Zheng

National Natural Science Foundation of China (21977047)

  • Peng Zheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Tian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,537
    views
  • 890
    downloads
  • 258
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fang Tian
  2. Bei Tong
  3. Liang Sun
  4. Shengchao Shi
  5. Bin Zheng
  6. Zibin Wang
  7. Xianchi Dong
  8. Peng Zheng
(2021)
N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2
eLife 10:e69091.
https://doi.org/10.7554/eLife.69091

Share this article

https://doi.org/10.7554/eLife.69091

Further reading

    1. Structural Biology and Molecular Biophysics
    Yao Chi Chen, Karen Sargsyan ... Carmay Lim
    Research Article

    Experimental detection of residues critical for protein–protein interactions (PPI) is a time-consuming, costly, and labor-intensive process. Hence, high-throughput PPI-hot spot prediction methods have been developed, but they have been validated using relatively small datasets, which may compromise their predictive reliability. Here, we introduce PPI-hotspotID, a novel method for identifying PPI-hot spots using the free protein structure, and validated it on the largest collection of experimentally confirmed PPI-hot spots to date. We explored the possibility of detecting PPI-hot spots using (i) FTMap in the PPI mode, which identifies hot spots on protein–protein interfaces from the free protein structure, and (ii) the interface residues predicted by AlphaFold-Multimer. PPI-hotspotID yielded better performance than FTMap and SPOTONE, a webserver for predicting PPI-hot spots given the protein sequence. When combined with the AlphaFold-Multimer-predicted interface residues, PPI-hotspotID yielded better performance than either method alone. Furthermore, we experimentally verified several PPI-hotspotID-predicted PPI-hot spots of eukaryotic elongation factor 2. Notably, PPI-hotspotID can reveal PPI-hot spots not obvious from complex structures, including those in indirect contact with binding partners. PPI-hotspotID serves as a valuable tool for understanding PPI mechanisms and aiding drug design. It is available as a web server (https://ppihotspotid.limlab.dnsalias.org/) and open-source code (https://github.com/wrigjz/ppihotspotid/).

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.