Multiphoton imaging of neural structure and activity in Drosophila through the intact cuticle

  1. Max Jameson Aragon
  2. Aaron T Mok
  3. Jamien Shea
  4. Mengran Wang
  5. Haein Kim
  6. Nathan Barkdull
  7. Chris Xu
  8. Nilay Yapici  Is a corresponding author
  1. Princeton University, United States
  2. Cornell University, United States
  3. University of Florida, United States

Abstract

We developed a multiphoton imaging method to capture neural structure and activity in behaving flies through the intact cuticles. Our measurements show that the fly head cuticle has surprisingly high transmission at wavelengths > 900 nm, and the difficulty of through-cuticle imaging is due to the air sacs and/or fat tissue underneath the head cuticle. By compressing or removing the air sacs, we performed multiphoton imaging of the fly brain through the intact cuticle. Our anatomical and functional imaging results show that 2- and 3-photon imaging are comparable in superficial regions such as the mushroom body, but 3-photon imaging is superior in deeper regions such as the central complex and beyond. We further demonstrated 2-photon through-cuticle functional imaging of odor-evoked calcium responses from the mushroom body g-lobes in behaving flies short-term and long-term. The through-cuticle imaging method developed here extends the time limits of in vivo imaging in flies and opens new ways to capture neural structure and activity from the fly brain.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided.

Article and author information

Author details

  1. Max Jameson Aragon

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aaron T Mok

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jamien Shea

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mengran Wang

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Haein Kim

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan Barkdull

    Department of Physics, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1174-5046
  7. Chris Xu

    School of Applied and Engineering Physics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3493-6427
  8. Nilay Yapici

    Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
    For correspondence
    ny96@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1130-5083

Funding

National Science Foundation (DBI-1707312)

  • Nilay Yapici

National Institute of General Medical Sciences (R35 GM133698)

  • Nilay Yapici

Pew Charitable Trusts (Scholars Award)

  • Nilay Yapici

Alfred P. Sloan Foundation (Scholars Award)

  • Nilay Yapici

American Federation for Aging Research (Grants for Junior Faculty)

  • Nilay Yapici

National Science Foundation (DBI-1707312)

  • Chris Xu

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Aragon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,906
    views
  • 579
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Max Jameson Aragon
  2. Aaron T Mok
  3. Jamien Shea
  4. Mengran Wang
  5. Haein Kim
  6. Nathan Barkdull
  7. Chris Xu
  8. Nilay Yapici
(2022)
Multiphoton imaging of neural structure and activity in Drosophila through the intact cuticle
eLife 11:e69094.
https://doi.org/10.7554/eLife.69094

Share this article

https://doi.org/10.7554/eLife.69094

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.