Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia

Abstract

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.

Data availability

Lentivector plasmid sequences are available on Dryad. https://doi.org/10.5061/dryad.2330r1band doi:10.5061/dryad.m0cfxpp75.The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024067.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anne-Claire Godet

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Emilie Roussel

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian P David

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9842-1548
  4. Fransky Hantelys

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Florent Morfoisse

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Joffrey Alves

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Françoise Pujol

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Isabelle Ader

    Inserm, UMR 1301, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Edouard Bertrand

    Institut de Génétique Moléculaire de Montpellier, Mont[ellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Odile Burlet-Schiltz

    Institut de Pharmacologie et Biologie Structurale, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Carine Froment

    Institut de Pharmacologie et Biologie Structurale, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3688-5560
  12. Anthony K Henras

    5Molecular, Cellular and Developmental Biology Unit, CNRS, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Patrice Vitali

    5Molecular, Cellular and Developmental Biology Unit, CNRS, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Eric Lacazette

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Florence Tatin

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Barbara Garmy-Susini

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Anne-Catherine Prats

    Inserm UMR 1297, Toulouse, France
    For correspondence
    anne-catherine.prats@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5282-3776

Funding

Agence Nationale de la Recherche (ANR-18-CE11-0020-RIBOCARD)

  • Anne-Catherine Prats

Agence Nationale de la Recherche (ProFI ANR-10-INBS-08)

  • Odile Burlet-Schiltz
  • Carine Froment

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Godet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,829
    views
  • 207
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne-Claire Godet
  2. Emilie Roussel
  3. Florian P David
  4. Fransky Hantelys
  5. Florent Morfoisse
  6. Joffrey Alves
  7. Françoise Pujol
  8. Isabelle Ader
  9. Edouard Bertrand
  10. Odile Burlet-Schiltz
  11. Carine Froment
  12. Anthony K Henras
  13. Patrice Vitali
  14. Eric Lacazette
  15. Florence Tatin
  16. Barbara Garmy-Susini
  17. Anne-Catherine Prats
(2022)
Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia
eLife 11:e69162.
https://doi.org/10.7554/eLife.69162

Share this article

https://doi.org/10.7554/eLife.69162

Further reading

    1. Cell Biology
    2. Neuroscience
    Naoki Yamawaki, Hande Login ... Asami Tanimura
    Research Article

    The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (ENvCA1-proj. neurons), embedded in recurrent circuits with other EN neurons and the piriform cortex. Although the ENvCA1-proj. neuron activity was biased toward novelty across stimulus categories, their chemogenetic inhibition selectively disrupted the memory-guided but not innate responses of mice to novelty. Based on our functional connectivity analysis, we suggest that ENvCA1-proj. neurons serve as an essential node for recognition memory through recurrent circuits mediating sustained attention to novelty, and through feed-forward inhibition of distal vCA1 neurons shifting memory-guided behavior from familiarity to novelty.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.