A covariation analysis reveals elements of selectivity in quorum sensing systems

  1. Samantha Wellington Miranda
  2. Qian Cong
  3. Amy L Schaefer
  4. Emily Kenna MacLeod
  5. Angelina Zimenko
  6. David Baker
  7. E Peter Greenberg  Is a corresponding author
  1. University of Washington, United States
  2. University of Texas Southwestern Medical Center, United States
  3. University of Washington School of Medicine, United States

Abstract

Many bacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). In these systems, a signal synthase produces an AHL to which its paired receptor selectively responds. Selectivity is fundamental to cell signaling. Despite its importance, it has been challenging to determine how this selectivity is achieved and how AHL QS systems evolve and diversify. We hypothesized that we could use covariation within the protein sequences of AHL synthases and receptors to identify selectivity residues. We began by identifying about 6,000 unique synthase-receptor pairs. We then used the protein sequences of these pairs to identify covariation patterns and mapped the patterns onto the LasI/R system from Pseudomonas aeruginosa PAO1. The covarying residues in both proteins cluster around the ligand-binding sites. We demonstrate that these residues are involved in system selectivity toward the cognate signal and go on to engineer the Las system to both produce and respond to an alternate AHL signal. We have thus demonstrated that covariation methods provide a powerful approach for investigating selectivity in protein-small molecule interactions and have deepened our understanding of how communication systems evolve and diversify.

Data availability

All data generated or analyzed during this study are include in the manuscript and supporting files. Source data files have been provided for the protein sequences analyzed and for Figure 6, Figure 4 - figure supplement 2, Figure 5 - figure supplement 1, and Figure 7 - figure supplement 2.

Article and author information

Author details

  1. Samantha Wellington Miranda

    Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5072-2608
  2. Qian Cong

    Eugene McDermott Center for Human Growth and Development; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8909-0414
  3. Amy L Schaefer

    Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  4. Emily Kenna MacLeod

    Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Angelina Zimenko

    Microbiology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  6. David Baker

    Biochemistry, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7896-6217
  7. E Peter Greenberg

    Department of Microbiology, University of Washington School of Medicine, Seattle, United States
    For correspondence
    epgreen@u.washington.edu
    Competing interests
    E Peter Greenberg, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9474-8041

Funding

National Institutes of Health (R35GM136218)

  • E Peter Greenberg

National Institutes of Health (Program Grant,P41 GM103533-24)

  • Qian Cong

Washington Research Foundation (Postdoctoral Fellowship)

  • Qian Cong

Helen Hay Whitney Foundation (Postdoctoral Fellowship)

  • Samantha Wellington Miranda

Howard Hughes Medical Institute (Investigator Program)

  • David Baker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael T Laub, Massachusetts Institute of Technology, United States

Version history

  1. Received: April 6, 2021
  2. Accepted: June 25, 2021
  3. Accepted Manuscript published: June 28, 2021 (version 1)
  4. Version of Record published: August 2, 2021 (version 2)
  5. Version of Record updated: August 5, 2021 (version 3)

Copyright

© 2021, Wellington Miranda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,927
    views
  • 254
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha Wellington Miranda
  2. Qian Cong
  3. Amy L Schaefer
  4. Emily Kenna MacLeod
  5. Angelina Zimenko
  6. David Baker
  7. E Peter Greenberg
(2021)
A covariation analysis reveals elements of selectivity in quorum sensing systems
eLife 10:e69169.
https://doi.org/10.7554/eLife.69169

Share this article

https://doi.org/10.7554/eLife.69169

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.