Physical observables to determine the nature of membrane-less cellular sub-compartments

  1. Mathias L Heltberg
  2. Judith Miné-Hattab
  3. Angela Taddei
  4. Aleksandra M Walczak  Is a corresponding author
  5. Thierry Mora  Is a corresponding author
  1. Institut Curie, France
  2. Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, France
  3. École Normale Supérieure, France

Abstract

The spatial organization of complex biochemical reactions is essential for the regulation of cellular processes. Membrane-less structures called foci containing high concentrations of specific proteins have been reported in a variety of contexts, but the mechanism of their formation is not fully understood. Several competing mechanisms exist that are difficult to distinguish empirically, including liquid-liquid phase separation, and the trapping of molecules by multiple binding sites. Here we propose a theoretical framework and outline observables to differentiate between these scenarios from single molecule tracking experiments. In the binding site model, we derive relations between the distribution of proteins, their diffusion properties, and their radial displacement. We predict that protein search times can be reduced for targets inside a liquid droplet, but not in an aggregate of slowly moving binding sites. We use our results to reject the multiple binding site model for Rad52 foci, and find a picture consistent with a liquid-liquid phase separation. These results are applicable to future experiments and suggest different biological roles for liquid droplet and binding site foci.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Mathias L Heltberg

    UMR 3664 - Nuclear Dynamics, Institut Curie, paris, France
    Competing interests
    No competing interests declared.
  2. Judith Miné-Hattab

    Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9986-4092
  3. Angela Taddei

    UMR3664, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3217-0739
  4. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    For correspondence
    aleksandra.walczak@phys.ens.fr
    Competing interests
    Aleksandra M Walczak, eLife senior editor.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  5. Thierry Mora

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    For correspondence
    thierry.mora@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361

Funding

Agence Nationale de la Recherche (Q-life 356 ANR-17-CONV-0005)

  • Mathias L Heltberg
  • Judith Miné-Hattab
  • Angela Taddei
  • Aleksandra M Walczak
  • Thierry Mora

Centre National de la Recherche Scientifique (80' MITI project PhONeS)

  • Judith Miné-Hattab
  • Angela Taddei

H2020 European Research Council (COG 724208)

  • Mathias L Heltberg
  • Aleksandra M Walczak
  • Thierry Mora

Agence Nationale de la Recherche (ANR-15-CE12-0007)

  • Judith Miné-Hattab
  • Angela Taddei

Agence Nationale de la Recherche (ANR-12-PDOC- 0035?01)

  • Judith Miné-Hattab
  • Angela Taddei

Fondation pour la Recherche Médicale (DEP20151234398)

  • Judith Miné-Hattab
  • Angela Taddei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Agnese Seminara, University of Genoa, Italy

Publication history

  1. Received: April 7, 2021
  2. Accepted: October 21, 2021
  3. Accepted Manuscript published: October 22, 2021 (version 1)
  4. Version of Record published: November 17, 2021 (version 2)

Copyright

© 2021, Heltberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,411
    Page views
  • 286
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mathias L Heltberg
  2. Judith Miné-Hattab
  3. Angela Taddei
  4. Aleksandra M Walczak
  5. Thierry Mora
(2021)
Physical observables to determine the nature of membrane-less cellular sub-compartments
eLife 10:e69181.
https://doi.org/10.7554/eLife.69181

Further reading

    1. Physics of Living Systems
    Robin Thandiackal, George Lauder
    Research Article Updated

    Schooling in fish is linked to a number of factors such as increased foraging success, predator avoidance, and social interactions. In addition, a prevailing hypothesis is that swimming in groups provides energetic benefits through hydrodynamic interactions. Thrust wakes are frequently occurring flow structures in fish schools as they are shed behind swimming fish. Despite increased flow speeds in these wakes, recent modeling work has suggested that swimming directly in-line behind an individual may lead to increased efficiency. However, only limited data are available on live fish interacting with thrust wakes. Here we designed a controlled experiment in which brook trout, Salvelinus fontinalis, interact with thrust wakes generated by a robotic mechanism that produces a fish-like wake. We show that trout swim in thrust wakes, reduce their tail-beat frequencies, and synchronize with the robotic flapping mechanism. Our flow and pressure field analysis revealed that the trout are interacting with oncoming vortices and that they exhibit reduced pressure drag at the head compared to swimming in isolation. Together, these experiments suggest that trout swim energetically more efficiently in thrust wakes and support the hypothesis that swimming in the wake of one another is an advantageous strategy to save energy in a school.

    1. Physics of Living Systems
    Iain D Couzin, Liang Li
    Insight

    When a fish beats its tail, it produces vortices in the water that other fish could take advantage of to save energy while swimming.