Physical observables to determine the nature of membrane-less cellular sub-compartments

  1. Mathias L Heltberg
  2. Judith Miné-Hattab
  3. Angela Taddei
  4. Aleksandra M Walczak  Is a corresponding author
  5. Thierry Mora  Is a corresponding author
  1. Institut Curie, France
  2. Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, France
  3. École Normale Supérieure, France

Abstract

The spatial organization of complex biochemical reactions is essential for the regulation of cellular processes. Membrane-less structures called foci containing high concentrations of specific proteins have been reported in a variety of contexts, but the mechanism of their formation is not fully understood. Several competing mechanisms exist that are difficult to distinguish empirically, including liquid-liquid phase separation, and the trapping of molecules by multiple binding sites. Here we propose a theoretical framework and outline observables to differentiate between these scenarios from single molecule tracking experiments. In the binding site model, we derive relations between the distribution of proteins, their diffusion properties, and their radial displacement. We predict that protein search times can be reduced for targets inside a liquid droplet, but not in an aggregate of slowly moving binding sites. We use our results to reject the multiple binding site model for Rad52 foci, and find a picture consistent with a liquid-liquid phase separation. These results are applicable to future experiments and suggest different biological roles for liquid droplet and binding site foci.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Mathias L Heltberg

    UMR 3664 - Nuclear Dynamics, Institut Curie, paris, France
    Competing interests
    No competing interests declared.
  2. Judith Miné-Hattab

    Institut Curie, PSL University, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9986-4092
  3. Angela Taddei

    UMR3664, Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3217-0739
  4. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    For correspondence
    aleksandra.walczak@phys.ens.fr
    Competing interests
    Aleksandra M Walczak, eLife senior editor.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  5. Thierry Mora

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    For correspondence
    thierry.mora@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361

Funding

Agence Nationale de la Recherche (Q-life 356 ANR-17-CONV-0005)

  • Mathias L Heltberg
  • Judith Miné-Hattab
  • Angela Taddei
  • Aleksandra M Walczak
  • Thierry Mora

Centre National de la Recherche Scientifique (80' MITI project PhONeS)

  • Judith Miné-Hattab
  • Angela Taddei

H2020 European Research Council (COG 724208)

  • Mathias L Heltberg
  • Aleksandra M Walczak
  • Thierry Mora

Agence Nationale de la Recherche (ANR-15-CE12-0007)

  • Judith Miné-Hattab
  • Angela Taddei

Agence Nationale de la Recherche (ANR-12-PDOC- 0035?01)

  • Judith Miné-Hattab
  • Angela Taddei

Fondation pour la Recherche Médicale (DEP20151234398)

  • Judith Miné-Hattab
  • Angela Taddei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Agnese Seminara, University of Genoa, Italy

Version history

  1. Received: April 7, 2021
  2. Accepted: October 21, 2021
  3. Accepted Manuscript published: October 22, 2021 (version 1)
  4. Version of Record published: November 17, 2021 (version 2)

Copyright

© 2021, Heltberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,675
    views
  • 334
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mathias L Heltberg
  2. Judith Miné-Hattab
  3. Angela Taddei
  4. Aleksandra M Walczak
  5. Thierry Mora
(2021)
Physical observables to determine the nature of membrane-less cellular sub-compartments
eLife 10:e69181.
https://doi.org/10.7554/eLife.69181

Share this article

https://doi.org/10.7554/eLife.69181

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Taegon Chung, Iksoo Chang, Sangyeol Kim
    Research Article

    Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous works on kinetic simulations of animals helped researchers understand the physical mechanisms of locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain model for the locomotion of C. elegans by developing Newtonian equations of motion for each body segment of C. elegans. Having accounted for friction-coefficients of the surrounding environment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model (ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn navigation. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. elegans to allow investigation of the force distribution. This model will facilitate our understanding of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, it can be used to research actuator-controller interaction between muscles and neuronal circuits.

    1. Physics of Living Systems
    Giulio Facchini, Alann Rathery ... Andrea Perna
    Research Article

    Termites build complex nests which are an impressive example of self-organization. We know that the coordinated actions involved in the construction of these nests by multiple individuals are primarily mediated by signals and cues embedded in the structure of the nest itself. However, to date there is still no scientific consensus about the nature of the stimuli that guide termite construction, and how they are sensed by termites. In order to address these questions, we studied the early building behavior of Coptotermes gestroi termites in artificial arenas, decorated with topographic cues to stimulate construction. Pellet collections were evenly distributed across the experimental setup, compatible with a collection mechanism that is not affected by local topography, but only by the distribution of termite occupancy (termites pick pellets at the positions where they are). Conversely, pellet depositions were concentrated at locations of high surface curvature and at the boundaries between different types of substrate. The single feature shared by all pellet deposition regions was that they correspond to local maxima in the evaporation flux. We can show analytically and we confirm experimentally that evaporation flux is directly proportional to the local curvature of nest surfaces. Taken together, our results indicate that surface curvature is sufficient to organize termite building activity and that termites likely sense curvature indirectly through substrate evaporation. Our findings reconcile the apparently discordant results of previous studies.