GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway

  1. Virginia Kroef
  2. Sabine Ruegenberg
  3. Moritz Horn
  4. Kira Allmeroth
  5. Lena Ebert
  6. Seyma Bozkus
  7. Stephan Miethe
  8. Ulrich Elling
  9. Bernhard Schermer
  10. Ulrich Baumann
  11. Martin Sebastian Denzel  Is a corresponding author
  1. Max Planck Institute for Biology of Ageing, Germany
  2. JLP Health GmbH, Austria
  3. University of Cologne, Germany
  4. Austrian Academy of Sciences, Austria
  5. Altos Labs, United Kingdom

Abstract

The hexosamine biosynthetic pathway (HBP) produces the essential metabolite UDP-GlcNAc and plays a key role in metabolism, health, and aging. The HBP is controlled by its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFPT/GFAT) that is directly inhibited by UDP-GlcNAc in a feedback loop. HBP regulation by GFPT is well studied but other HBP regulators have remained obscure. Elevated UDP‑GlcNAc levels counteract the glycosylation toxin tunicamycin (TM) and thus we screened for TM resistance in haploid mouse embryonic stem cells (mESCs) using random chemical mutagenesis to determine alternative HBP regulation. We identified the N‑acetylglucosamine deacetylase AMDHD2 that catalyzes a reverse reaction in the HBP and its loss strongly elevated UDP-GlcNAc. To better understand AMDHD2, we solved the crystal structure and found that loss-of-function is caused by protein destabilization or interference with its catalytic activity. Finally, we show that mESCs express AMDHD2 together with GFPT2 instead of the more common paralog GFPT1. Compared with GFPT1, GFPT2 had a much lower sensitivity to UDP-GlcNAc inhibition, explaining how AMDHD2 loss-of-function resulted in HBP activation. This HBP configuration in which AMDHD2 serves to balance GFPT2 activity was also observed in other mESCs and, consistently, the GFPT2:GFPT1 ratio decreased with differentiation of human embryonic stem cells. Together, our data reveal a critical function of AMDHD2 in limiting UDP‑GlcNAc production in cells that use GFPT2 for metabolite entry into the HBP.

Data availability

Structural data reported in this study have been deposited in the Protein Data Bank with the accession codes 7NUT [https://doi.org/10.2210/pdb7NUT/pdb] and 7NUU [https://doi.org/10.2210/pdb7NUU/pdb].

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Virginia Kroef

    Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3695-911X
  2. Sabine Ruegenberg

    Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5292-9610
  3. Moritz Horn

    JLP Health GmbH, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Kira Allmeroth

    Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2659-6776
  5. Lena Ebert

    University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Seyma Bozkus

    University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephan Miethe

    Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ulrich Elling

    Vienna Biocenter, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Bernhard Schermer

    University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ulrich Baumann

    University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin Sebastian Denzel

    Altos Labs, Cambridge, United Kingdom
    For correspondence
    mdenzel@altoslabs.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5691-3349

Funding

Bundesministerium für Bildung und Forschung (01GQ1423A EndoProtect)

  • Sabine Ruegenberg

Bundesministerium für Bildung und Forschung (01GQ1423A EndoProtect)

  • Stephan Miethe

Bundesministerium für Bildung und Forschung (01GQ1423A EndoProtect)

  • Martin Sebastian Denzel

Deutsche Forschungsgemeinschaft (73111208-SFB 829)

  • Ulrich Baumann

Deutsche Forschungsgemeinschaft (73111208-SFB 829)

  • Martin Sebastian Denzel

H2020 European Research Council (ERC-2014-StG-640254-MetAGEn)

  • Martin Sebastian Denzel

Max Planck Institute for Biology of Ageing (Open Access Funding)

  • Virginia Kroef

Deutsche Forschungsgemeinschaft (SCHE1562/8-1)

  • Bernhard Schermer

Deutsche Forschungsgemeinschaft (SFB1403, project number 414786233, A09)

  • Bernhard Schermer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures have been performed in our specialized facility, followed all relevant animal welfare guidelines and regulations, and were approved by LANUV NRW 84-02.04.2015.A025.

Reviewing Editor

  1. Hening Lin, Cornell University, United States

Publication history

  1. Received: April 8, 2021
  2. Preprint posted: April 23, 2021 (view preprint)
  3. Accepted: February 28, 2022
  4. Accepted Manuscript published: March 1, 2022 (version 1)
  5. Accepted Manuscript updated: March 3, 2022 (version 2)
  6. Version of Record published: March 31, 2022 (version 3)

Copyright

© 2022, Kroef et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,151
    Page views
  • 205
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Virginia Kroef
  2. Sabine Ruegenberg
  3. Moritz Horn
  4. Kira Allmeroth
  5. Lena Ebert
  6. Seyma Bozkus
  7. Stephan Miethe
  8. Ulrich Elling
  9. Bernhard Schermer
  10. Ulrich Baumann
  11. Martin Sebastian Denzel
(2022)
GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway
eLife 11:e69223.
https://doi.org/10.7554/eLife.69223

Further reading

    1. Biochemistry and Chemical Biology
    Allyson Li, Rashmi Voleti ... Neel H Shah
    Tools and Resources Updated

    Tyrosine kinases and SH2 (phosphotyrosine recognition) domains have binding specificities that depend on the amino acid sequence surrounding the target (phospho)tyrosine residue. Although the preferred recognition motifs of many kinases and SH2 domains are known, we lack a quantitative description of sequence specificity that could guide predictions about signaling pathways or be used to design sequences for biomedical applications. Here, we present a platform that combines genetically encoded peptide libraries and deep sequencing to profile sequence recognition by tyrosine kinases and SH2 domains. We screened several tyrosine kinases against a million-peptide random library and used the resulting profiles to design high-activity sequences. We also screened several kinases against a library containing thousands of human proteome-derived peptides and their naturally-occurring variants. These screens recapitulated independently measured phosphorylation rates and revealed hundreds of phosphosite-proximal mutations that impact phosphosite recognition by tyrosine kinases. We extended this platform to the analysis of SH2 domains and showed that screens could predict relative binding affinities. Finally, we expanded our method to assess the impact of non-canonical and post-translationally modified amino acids on sequence recognition. This specificity profiling platform will shed new light on phosphotyrosine signaling and could readily be adapted to other protein modification/recognition domains.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sean M Braet, Theresa SC Buckley ... Ganesh S Anand
    Research Article Updated

    SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.