Pneumococcal genetic variability in age-dependent bacterial carriage

  1. Philip HC Kremer  Is a corresponding author
  2. Bart Ferwerda
  3. Hester J Bootsma
  4. Nienke Y Rots
  5. Alienke J Wijmenga-Monsuur
  6. Elisabeth AM Sanders
  7. Krzysztof Trzciński
  8. Anne L Wyllie
  9. Paul Turner
  10. Arie van der Ende
  11. Matthijs C Brouwer
  12. Stephen D Bentley
  13. Diederik van de Beek
  14. John Lees
  1. Amsterdam UMC, University of Amsterdam, Netherlands
  2. National Institute for Public Health and the Environment, Netherlands
  3. Wilhelmina Children's Hospital, Netherlands
  4. Yale School of Public Health, United States
  5. Angkor Hospital for Children, Cambodia
  6. Amsterdam UMC, Netherlands
  7. Wellcome Sanger Institute, United Kingdom
  8. European Bioinformatics Institute, United Kingdom

Abstract

The characteristics of pneumococcal carriage vary between infants and adults, with onward implications for transmission rates, and disease control using vaccines. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen variation is currently less well-known. Indeed, identification of specific pneumococcal genetic factors associated with carriage in younger or older age groups may suggest alternative vaccine formulations would reduce overall disease. To search for such factors, we used whole genome sequencing to understand how pneumococcal variation is associated with age. We performed genome sequencing in a large carriage cohort, and conducted a meta-analysis with an existing carriage study. We compiled a dictionary of pathogen genetic variation including serotype, sequence cluster, sequence elements, SNPs, burden combined rare variants, and clusters of orthologous genes (COGs) for each cohort - all of which used in a genome-wide association with host age. Age-dependent colonization showed weak evidence for heritability in the first cohort (h2 = 0.10, 0.00 - 0.69 95% CI), and stronger evidence in the second cohort (h2 = 0.56, 0.23 - 0.87 95% CI). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 0.04 - 0.14 95% CI and h2GPSC = 0.06, 0.03 - 0.13 95% CI) and the second cohort (h2serotype = 0.11, 0.05 - 0.21 95% CI and h2GPSC = 0.20, 0.12 - 0.31 95% CI). In a meta-analysis of these cohorts, we found one candidate association (p = 1.2x10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find an effect of pathogen genome variation on pneumococcal carriage in children versus adult hosts, this was variable between populations and does not appear have a strong relationship with individual genes. This supports proposals for adaptive future vaccination strategies which are primarily targeted at dominant circulating serotypes, and tailored to the composition of the pathogen populations.

Data availability

Fastq sequences of bacterial isolates from the Dutch cohort were deposited in the European Nucleotide Archive (ENA, study and accession numbers in Supplementary Table S2). Sequences of bacterial isolates in the Maela cohort are available at ENA under study numbers ERP000435, ERP000483, ERP000485, ERP000487, ERP000598 and ERP000599 (Supplementary Table S3). Summary statistics for the results from the genome wide association studies can be found at https://figshare.com/articles/dataset/S_pneumoniae_carriage_GWAS/14431313

The following data sets were generated

Article and author information

Author details

  1. Philip HC Kremer

    Department of Neurology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Netherlands
    For correspondence
    philip_kremer@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0483-841X
  2. Bart Ferwerda

    Department of Neurology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Hester J Bootsma

    Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Nienke Y Rots

    Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Alienke J Wijmenga-Monsuur

    Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5663-860X
  6. Elisabeth AM Sanders

    Department of Pediatric Immunology and Infectious D, Wilhelmina Children's Hospital, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Krzysztof Trzciński

    Department of Pediatric Immunology and Infectious D, Wilhelmina Children's Hospital, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Anne L Wyllie

    Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6015-0279
  9. Paul Turner

    Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1013-7815
  10. Arie van der Ende

    Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthijs C Brouwer

    Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Stephen D Bentley

    Wellcome Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Diederik van de Beek

    Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. John Lees

    European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (281156)

  • Diederik van de Beek

ZonMw (91819627)

  • Diederik van de Beek

Wellcome Trust (219699)

  • John Lees

Wellcome Trust (083735/Z/07/Z)

  • Paul Turner

Rijksinstituut voor Volksgezondheid en Milieu

  • Arie van der Ende

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: in children and their parents (NL24116 and NL40288/NTR3613) were received from the National Ethics Committee in the Netherlands (CCMO and METC Noord-Holland). For the 2010/2011 study, a National Ethics Committee in The Netherlands (STEG-METC, Almere) waived the requirement for EC approval. Informed consent for the Maela cohort was described elsewhere.(6) Studies were conducted in accordance with the European Statements for Good Clinical Practice and the Declaration of Helsinki of the World Medical Association.

Copyright

© 2022, Kremer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,064
    views
  • 236
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philip HC Kremer
  2. Bart Ferwerda
  3. Hester J Bootsma
  4. Nienke Y Rots
  5. Alienke J Wijmenga-Monsuur
  6. Elisabeth AM Sanders
  7. Krzysztof Trzciński
  8. Anne L Wyllie
  9. Paul Turner
  10. Arie van der Ende
  11. Matthijs C Brouwer
  12. Stephen D Bentley
  13. Diederik van de Beek
  14. John Lees
(2022)
Pneumococcal genetic variability in age-dependent bacterial carriage
eLife 11:e69244.
https://doi.org/10.7554/eLife.69244

Share this article

https://doi.org/10.7554/eLife.69244

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.