Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain

  1. Mohammad Ali Salehinejad
  2. Elham Ghanavati
  3. Jörg Reinders
  4. Jan G Hengstler
  5. Min-Fang Kuo
  6. Michael A Nitsche  Is a corresponding author
  1. Leibniz Research Centre for Working Environment and Human Factors, Germany

Abstract

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning, and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation (TMS), (b) inducibility of LTP- and-LTD-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreased and/or reversed GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity abolishes while the inhibitory LTD-like plasticity converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data suggest that upscaled brain excitability, and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance.

Data availability

The data files generated in this study are publicly available at https://osf.io/kve6d via Open Science Foundation (OSF).

Article and author information

Author details

  1. Mohammad Ali Salehinejad

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1913-4677
  2. Elham Ghanavati

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5944-8123
  3. Jörg Reinders

    Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
  4. Jan G Hengstler

    Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
  5. Min-Fang Kuo

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9955-0237
  6. Michael A Nitsche

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    For correspondence
    nitsche@ifado.de
    Competing interests
    Michael A Nitsche, is a member of the Scientific Advisory Boards of Neuroelectrics and NeuroDevice.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2207-5965

Funding

No external funding was received for this work

Ethics

Human subjects: This study conformed to the Declaration of Helsinki guidelines and was approved by the Institutional Review Board (ethics code: 99). Participants gave informed consent and received monetary compensation.

Copyright

© 2022, Salehinejad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,821
    views
  • 762
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammad Ali Salehinejad
  2. Elham Ghanavati
  3. Jörg Reinders
  4. Jan G Hengstler
  5. Min-Fang Kuo
  6. Michael A Nitsche
(2022)
Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain
eLife 11:e69308.
https://doi.org/10.7554/eLife.69308

Share this article

https://doi.org/10.7554/eLife.69308

Further reading

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.