Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain

  1. Mohammad Ali Salehinejad
  2. Elham Ghanavati
  3. Jörg Reinders
  4. Jan G Hengstler
  5. Min-Fang Kuo
  6. Michael A Nitsche  Is a corresponding author
  1. Leibniz Research Centre for Working Environment and Human Factors, Germany

Abstract

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning, and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation (TMS), (b) inducibility of LTP- and-LTD-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreased and/or reversed GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity abolishes while the inhibitory LTD-like plasticity converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data suggest that upscaled brain excitability, and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance.

Data availability

The data files generated in this study are publicly available at https://osf.io/kve6d via Open Science Foundation (OSF).

Article and author information

Author details

  1. Mohammad Ali Salehinejad

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1913-4677
  2. Elham Ghanavati

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5944-8123
  3. Jörg Reinders

    Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
  4. Jan G Hengstler

    Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
  5. Min-Fang Kuo

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9955-0237
  6. Michael A Nitsche

    Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
    For correspondence
    nitsche@ifado.de
    Competing interests
    Michael A Nitsche, is a member of the Scientific Advisory Boards of Neuroelectrics and NeuroDevice.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2207-5965

Funding

No external funding was received for this work

Reviewing Editor

  1. Martin Dresler, Radboud University Medical Centre, Netherlands

Ethics

Human subjects: This study conformed to the Declaration of Helsinki guidelines and was approved by the Institutional Review Board (ethics code: 99). Participants gave informed consent and received monetary compensation.

Version history

  1. Received: April 11, 2021
  2. Preprint posted: April 30, 2021 (view preprint)
  3. Accepted: June 1, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: June 23, 2022 (version 2)

Copyright

© 2022, Salehinejad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,017
    views
  • 639
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammad Ali Salehinejad
  2. Elham Ghanavati
  3. Jörg Reinders
  4. Jan G Hengstler
  5. Min-Fang Kuo
  6. Michael A Nitsche
(2022)
Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain
eLife 11:e69308.
https://doi.org/10.7554/eLife.69308

Share this article

https://doi.org/10.7554/eLife.69308

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.