The mechanism of MICU-dependent gating of the mitochondrial Ca2+ uniporter

  1. Vivek Garg  Is a corresponding author
  2. Junji Suzuki
  3. Ishan Paranjpe
  4. Tiffany Unsulangi
  5. Liron Boyman
  6. Lorin S Milescu
  7. W Jonathan Lederer
  8. Yuriy Kirichok  Is a corresponding author
  1. University of Maryland, United States
  2. University of California San Francisco, United States
  3. University of Maryland Baltimore, United States
  4. University of Maryland School of Medicine, United States

Abstract

Ca2+ entry into mitochondria is through the mitochondrial calcium uniporter complex (MCUcx), a Ca2+-selective channel composed of five subunit types. Two MCUcx subunits (MCU and EMRE) span the inner mitochondrial membrane, while three Ca2+-regulatory subunits (MICU1, MICU2 and MICU3) reside in the intermembrane space. Here we provide rigorous analysis of Ca2+ and Na+ fluxes via MCUcx in intact isolated mitochondria to understand the function of MICU subunits. We also perform direct patch clamp recordings of macroscopic and single MCUcx currents to gain further mechanistic insight. This comprehensive analysis shows that the MCUcx pore, composed of the EMRE and MCU subunits, is not occluded nor plugged by MICUs during the absence or presence of extramitochondrial Ca2+ as has been widely reported. Instead, MICUs potentiate activity of MCUcx as extramitochondrial Ca2+ is elevated. MICUs achieve this by modifying the gating properties of MCUcx allowing it to spend more time in the open state.

Data availability

Due to the size of the dataset, raw electrophysiology traces are available on request to the corresponding author. All information has been extracted from the raw electrophysiological traces and is available to download as source data files. All the codes or software used in analyzing the data and their sources are listed in the Key Resources Table.

Article and author information

Author details

  1. Vivek Garg

    Physiology, University of Maryland, Baltimore, United States
    For correspondence
    vgarg@som.umaryland.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6940-5415
  2. Junji Suzuki

    Physiology, University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ishan Paranjpe

    Department of Physiology, University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tiffany Unsulangi

    Department of Physiology, University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Liron Boyman

    Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lorin S Milescu

    Biology, University of Maryland Baltimore, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3177-7010
  7. W Jonathan Lederer

    University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuriy Kirichok

    Department of Physiology, University of California San Francisco, San Francisco, United States
    For correspondence
    yuriy.kirichok@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7155-843X

Funding

National Institutes of Health (R01GM134536)

  • Yuriy Kirichok

National Institutes of Health (R35GM136415)

  • Yuriy Kirichok

American Heart Association (17SDG33660926)

  • Vivek Garg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to procedures approved by the UCSF Institutional Animal Care and Use Committee (approval # AN183460-02A) and adhered to NIH standards.

Copyright

© 2021, Garg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,088
    views
  • 440
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vivek Garg
  2. Junji Suzuki
  3. Ishan Paranjpe
  4. Tiffany Unsulangi
  5. Liron Boyman
  6. Lorin S Milescu
  7. W Jonathan Lederer
  8. Yuriy Kirichok
(2021)
The mechanism of MICU-dependent gating of the mitochondrial Ca2+ uniporter
eLife 10:e69312.
https://doi.org/10.7554/eLife.69312

Share this article

https://doi.org/10.7554/eLife.69312

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.