The mechanism of MICU-dependent gating of the mitochondrial Ca2+ uniporter

  1. Vivek Garg  Is a corresponding author
  2. Junji Suzuki
  3. Ishan Paranjpe
  4. Tiffany Unsulangi
  5. Liron Boyman
  6. Lorin S Milescu
  7. W Jonathan Lederer
  8. Yuriy Kirichok  Is a corresponding author
  1. University of Maryland, United States
  2. University of California San Francisco, United States
  3. University of Maryland Baltimore, United States
  4. University of Maryland School of Medicine, United States

Abstract

Ca2+ entry into mitochondria is through the mitochondrial calcium uniporter complex (MCUcx), a Ca2+-selective channel composed of five subunit types. Two MCUcx subunits (MCU and EMRE) span the inner mitochondrial membrane, while three Ca2+-regulatory subunits (MICU1, MICU2 and MICU3) reside in the intermembrane space. Here we provide rigorous analysis of Ca2+ and Na+ fluxes via MCUcx in intact isolated mitochondria to understand the function of MICU subunits. We also perform direct patch clamp recordings of macroscopic and single MCUcx currents to gain further mechanistic insight. This comprehensive analysis shows that the MCUcx pore, composed of the EMRE and MCU subunits, is not occluded nor plugged by MICUs during the absence or presence of extramitochondrial Ca2+ as has been widely reported. Instead, MICUs potentiate activity of MCUcx as extramitochondrial Ca2+ is elevated. MICUs achieve this by modifying the gating properties of MCUcx allowing it to spend more time in the open state.

Data availability

Due to the size of the dataset, raw electrophysiology traces are available on request to the corresponding author. All information has been extracted from the raw electrophysiological traces and is available to download as source data files. All the codes or software used in analyzing the data and their sources are listed in the Key Resources Table.

Article and author information

Author details

  1. Vivek Garg

    Physiology, University of Maryland, Baltimore, United States
    For correspondence
    vgarg@som.umaryland.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6940-5415
  2. Junji Suzuki

    Physiology, University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ishan Paranjpe

    Department of Physiology, University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tiffany Unsulangi

    Department of Physiology, University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Liron Boyman

    Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lorin S Milescu

    Biology, University of Maryland Baltimore, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3177-7010
  7. W Jonathan Lederer

    University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuriy Kirichok

    Department of Physiology, University of California San Francisco, San Francisco, United States
    For correspondence
    yuriy.kirichok@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7155-843X

Funding

National Institutes of Health (R01GM134536)

  • Yuriy Kirichok

National Institutes of Health (R35GM136415)

  • Yuriy Kirichok

American Heart Association (17SDG33660926)

  • Vivek Garg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Ethics

Animal experimentation: All animal experiments were performed according to procedures approved by the UCSF Institutional Animal Care and Use Committee (approval # AN183460-02A) and adhered to NIH standards.

Version history

  1. Preprint posted: April 5, 2020 (view preprint)
  2. Received: April 11, 2021
  3. Accepted: August 9, 2021
  4. Accepted Manuscript published: August 31, 2021 (version 1)
  5. Version of Record published: September 13, 2021 (version 2)

Copyright

© 2021, Garg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,730
    Page views
  • 386
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vivek Garg
  2. Junji Suzuki
  3. Ishan Paranjpe
  4. Tiffany Unsulangi
  5. Liron Boyman
  6. Lorin S Milescu
  7. W Jonathan Lederer
  8. Yuriy Kirichok
(2021)
The mechanism of MICU-dependent gating of the mitochondrial Ca2+ uniporter
eLife 10:e69312.
https://doi.org/10.7554/eLife.69312

Share this article

https://doi.org/10.7554/eLife.69312

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Karolina Honzejkova, Dalibor Kosek ... Tomas Obsil
    Research Article

    Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniyal Tariq, Nicole Maurici ... Brian R Crane
    Research Article

    Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid–liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.