A XRCC4 mutant mouse, a model for human X4 syndrome, reveals interplays with Xlf, PAXX, and ATM in lymphoid development

Abstract

We developed a Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4 deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA Ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core NHEJ DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double KO settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights in the understanding of the clinical manifestations of human XRCC4 deficient condition, in particular its absence of immune deficiency.

Data availability

The xl file with raw data used in PCA analysis (Fig. 2G) has been depositied on DRYADhttps://doi.org/10.5061/dryad.547d7wm7x

The following data sets were generated

Article and author information

Author details

  1. Benoit Roch

    DGSI Laboratory, Institut Imagine, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Vincent Abramowski

    DGSI Laboratory, Institut Imagine, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Olivier Etienne

    Laboratoire de RadioPathologie, CEA, Fontenay-aux Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefania Musilli

    DGSI Laboratory, Institut Imagine, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre David

    Transgenesis lab, Institut Imagine, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jean-Baptiste Charbonnier

    Institute for Integrative Biology of the Cell (I2BC), CEA, Gif-s-Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Isabelle Callebaut

    Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. François D Boussin

    Laboratoire de RadioPathologie, CEA, Fontenay-aux Roses, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Pierre de Villartay

    DGSI Laboratory, Institut Imagine, INSERM, Paris, France
    For correspondence
    jean-pierre.de-villartay@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5987-0463

Funding

Institut National de la Santé et de la Recherche Médicale

  • Benoit Roch
  • Vincent Abramowski
  • Stefania Musilli
  • Jean-Pierre de Villartay

Agence Nationale de la Recherche (ANR-10-IAHU-01)

  • Benoit Roch
  • Vincent Abramowski
  • Stefania Musilli
  • Pierre David
  • Jean-Pierre de Villartay

Institut National Du Cancer (PLBIO 16-280)

  • Benoit Roch
  • Vincent Abramowski
  • Stefania Musilli
  • Jean-Baptiste Charbonnier
  • Isabelle Callebaut
  • Jean-Pierre de Villartay

Ligue Contre le Cancer (Equipe Labellisée)

  • Benoit Roch
  • Vincent Abramowski
  • Stefania Musilli
  • Jean-Pierre de Villartay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ranjan Sen, National Institute on Aging, United States

Ethics

Animal experimentation: All experiments were performed in compliance with the French Ministry of Agriculture's regulations for animal experiments (act 87847, 19 October 1987; modified in May 2001) after audit with "Comité d'Ethique en Expérimentation Animale (CEEA) Paris Descartes" (Apafis #25432-2019041516286014 v6)

Version history

  1. Received: April 12, 2021
  2. Accepted: September 13, 2021
  3. Accepted Manuscript published: September 14, 2021 (version 1)
  4. Version of Record published: October 14, 2021 (version 2)

Copyright

© 2021, Roch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 654
    views
  • 127
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benoit Roch
  2. Vincent Abramowski
  3. Olivier Etienne
  4. Stefania Musilli
  5. Pierre David
  6. Jean-Baptiste Charbonnier
  7. Isabelle Callebaut
  8. François D Boussin
  9. Jean-Pierre de Villartay
(2021)
A XRCC4 mutant mouse, a model for human X4 syndrome, reveals interplays with Xlf, PAXX, and ATM in lymphoid development
eLife 10:e69353.
https://doi.org/10.7554/eLife.69353

Share this article

https://doi.org/10.7554/eLife.69353

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.