In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin

  1. Ben Tilly  Is a corresponding author
  2. Gillian Chalkley
  3. Jan van der Knaap
  4. Yuri Moshkin
  5. Tsung Wai Kan
  6. Dick HW Dekkers
  7. Jeroen Demmers
  8. Peter Verrijzer  Is a corresponding author
  1. Erasmus University Medical Center, Netherlands
  2. Erasmus MC, Netherlands
  3. ErasmusMC, Netherlands

Abstract

ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD025474.All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2 and Figure 2-figure-supplement1

The following data sets were generated

Article and author information

Author details

  1. Ben Tilly

    Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
    For correspondence
    b.tilly@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
  2. Gillian Chalkley

    Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Jan van der Knaap

    Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuri Moshkin

    Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Tsung Wai Kan

    Biochemistry, Erasmus MC, 3015 CN Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Dick HW Dekkers

    Proteomics Center, ErasmusMC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Jeroen Demmers

    Proteomics Center, ErasmusMC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Verrijzer

    Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
    For correspondence
    c.verrijzer@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6476-3264

Funding

FOM-AMOLF (DNA at Work)

  • Peter Verrijzer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Tilly et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,683
    views
  • 273
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben Tilly
  2. Gillian Chalkley
  3. Jan van der Knaap
  4. Yuri Moshkin
  5. Tsung Wai Kan
  6. Dick HW Dekkers
  7. Jeroen Demmers
  8. Peter Verrijzer
(2021)
In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin
eLife 10:e69424.
https://doi.org/10.7554/eLife.69424

Share this article

https://doi.org/10.7554/eLife.69424

Further reading

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.