Developmental changes in story-evoked responses in the neocortex and hippocampus

  1. Samantha S Cohen  Is a corresponding author
  2. Nim Tottenham
  3. Christopher Baldassano
  1. Columbia University, United States

Abstract

How does the representation of naturalistic life events change with age? Here we analyzed fMRI data from 414 children and adolescents (5 - 19 years) as they watched a narrative movie. In addition to changes in the degree of inter-subject correlation (ISC) with age in sensory and medial parietal regions, we used a novel measure (between-group ISC) to reveal age-related shifts in the responses across the majority of the neocortex. Over the course of development, brain responses became more discretized into stable and coherent events and shifted earlier in time to anticipate upcoming perceived event transitions, measured behaviorally in an age-matched sample. However, hippocampal responses to event boundaries actually decreased with age, suggesting a shifting division of labor between episodic encoding processes and schematic event representations between the ages of 5 and 19.

Data availability

All neuroimaging data is available at: http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/sharing_neuro.html, and all behavioral data is available at: https://github.com/samsydco/HBN

The following previously published data sets were used

Article and author information

Author details

  1. Samantha S Cohen

    Department of Psychology, Columbia University, New York, United States
    For correspondence
    samantha.s.cohen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3007-5372
  2. Nim Tottenham

    Department of Psychology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher Baldassano

    Department of Psychology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3540-5019

Funding

Andrew Africk

  • Samantha S Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from all subjects 18 years and older. Consent was obtained from the parents or legal guardians for participants younger than 18 years. The neuroimaging portion of the study was approved by the Chesapeake Institutional Review Board (https://www.chesapeakeirb.com/). The behavioral experimental procedures were approved by the Columbia University IRB (protocol number AAAS0252, for adult data, and AAAT8550, for child data).

Reviewing Editor

  1. Peter Kok, University College London, United Kingdom

Version history

  1. Preprint posted: April 12, 2021 (view preprint)
  2. Received: April 15, 2021
  3. Accepted: June 17, 2022
  4. Accepted Manuscript published: July 5, 2022 (version 1)
  5. Version of Record published: July 27, 2022 (version 2)

Copyright

© 2022, Cohen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,611
    Page views
  • 444
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha S Cohen
  2. Nim Tottenham
  3. Christopher Baldassano
(2022)
Developmental changes in story-evoked responses in the neocortex and hippocampus
eLife 11:e69430.
https://doi.org/10.7554/eLife.69430

Further reading

    1. Neuroscience
    Connon I Thomas, Melissa A Ryan ... Benjamin Scholl
    Research Article

    Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

    1. Neuroscience
    Weiwei Qui, Chelsea R Hutch ... Darleen Sandoval
    Research Article

    Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.