Sensory transduction is required for normal development and maturation ofcochlear inner hair cell synapses

  1. John Lee
  2. Kosuke Kosuke Kawai
  3. Jeffrey R Holt  Is a corresponding author
  4. Gwenaelle Geleoc
  1. Boston Children's Hospital, United States

Abstract

Acoustic overexposure and aging can damage auditory synapses in the inner ear by a process known as synaptopathy. These insults may also damage hair bundles and the sensory transduction apparatus in auditory hair cells. However, a connection between sensory transduction and synaptopathy has not been established. To evaluate potential contributions of sensory transduction to synapse formation and development, we assessed inner hair cell synapses in several genetic models of dysfunctional sensory transduction, including mice lacking Transmembrane Channel-like (Tmc) 1, Tmc2 or both, in Beethoven mice which carry a dominant Tmc1 mutation and in Spinner mice which carry a recessive mutation in Transmembrane inner ear (Tmie). Our analyses reveal loss of synapses in the absence of sensory transduction and preservation of synapses in Tmc1-null mice following restoration of sensory transduction via Tmc1 gene therapy. These results provide insight into the requirement of sensory transduction for hair cell synapse development and maturation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Original raw data files have been uploaded to Dryad and are freely available here: https://doi.org/10.5061/dryad.fxpnvx0sb

The following data sets were generated

Article and author information

Author details

  1. John Lee

    FM Kirby Neurobiology Center, Boston Children's Hospital, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Kosuke Kosuke Kawai

    Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Jeffrey R Holt

    Boston Children's Hospital, Boston, United States
    For correspondence
    jeffrey.holt@childrens.harvard.edu
    Competing interests
    Jeffrey R Holt, J.R.H holds a patent (62/638,697) on use of AAV9-PHP.B for gene therapy in the inner ear, is a scientific founder of Audition Therapeutics and an advisor to several biotech companies focused on inner ear therapeutics. The authors declare no other conflicts of interest..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7182-8011
  4. Gwenaelle Geleoc

    Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.

Funding

NIDCD (RO1 DC013521)

  • Jeffrey R Holt

NIDCD (RO1 DC008853)

  • Gwenaelle Geleoc

NIDCD (F32 DC018233)

  • John Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20-02-4149R and #00001240) at Boston Children's Hospital.

Copyright

© 2021, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,502
    views
  • 266
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John Lee
  2. Kosuke Kosuke Kawai
  3. Jeffrey R Holt
  4. Gwenaelle Geleoc
(2021)
Sensory transduction is required for normal development and maturation ofcochlear inner hair cell synapses
eLife 10:e69433.
https://doi.org/10.7554/eLife.69433

Share this article

https://doi.org/10.7554/eLife.69433

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.