Functional characterization of a 'plant-like' HYL1 homolog in the cnidarian Nematostella vectensis indicates a conserved involvement in microRNA biogenesis

Abstract

While the biogenesis of microRNAs (miRNAs) in both animals and plants depends on the RNase III Dicer, its partner proteins are considered distinct for each kingdom. Nevertheless, recent discovery of homologs of Hyponastic Leaves1 (HYL1), a 'plant-specific' Dicer partner, in the metazoan phylum Cnidaria, challenges the view that miRNAs evolved convergently in animals and plants. Here we show that the HYL1 homolog Hyl1-like a (Hyl1La) is crucial for development and miRNA biogenesis in the cnidarian model Nematostella vectensis. Inhibition of Hyl1La by morpholinos resulted in metamorphosis arrest in Nematostella embryos and a significant reduction in levels of most miRNAs. Further, meta-analysis of morphants of miRNA biogenesis components, like Dicer1, shows clustering of their miRNA profiles with Hyl1La morphants. Strikingly, immunoprecipitation of Hyl1La followed by quantitative PCR revealed that in contrast to the plant HYL1, Hyl1La interacts only with precursor miRNAs and not with primary miRNAs. This was complemented by an in vitro binding assay of Hyl1La to synthetic precursor miRNA. Altogether, these results suggest that the last common ancestor of animals and plants carried a HYL1 homolog that took essential part in miRNA biogenesis and indicate early emergence of the miRNA system before plants and animals separated.

Data availability

RNA sequencing data are available at NCBI-SRA under BioProject ID PRJNA630340.

The following data sets were generated

Article and author information

Author details

  1. Abhinandan M Tripathi

    Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Yael Admoni

    Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Arie Fridrich

    Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Magda Lewandowska

    Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Joachim M Surm

    Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Reuven Aharoni

    Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Yehu Moran

    Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    yehu.moran@mail.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9928-9294

Funding

H2020 European Research Council (637456)

  • Yehu Moran

H2020 European Research Council (863809)

  • Yehu Moran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Tripathi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,365
    views
  • 181
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Abhinandan M Tripathi
  2. Yael Admoni
  3. Arie Fridrich
  4. Magda Lewandowska
  5. Joachim M Surm
  6. Reuven Aharoni
  7. Yehu Moran
(2022)
Functional characterization of a 'plant-like' HYL1 homolog in the cnidarian Nematostella vectensis indicates a conserved involvement in microRNA biogenesis
eLife 11:e69464.
https://doi.org/10.7554/eLife.69464

Share this article

https://doi.org/10.7554/eLife.69464

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Hanna Tutaj, Katarzyna Tomala ... Ryszard Korona
    Research Article

    The loss of a single chromosome in a diploid organism halves the dosage of many genes and is usually accompanied by a substantial decrease in fitness. We asked whether this decrease simply reflects the joint damage caused by individual gene dosage deficiencies. We measured the fitness effects of single heterozygous gene deletions in yeast and combined them for each chromosome. This predicted a negative growth rate, that is, lethality, for multiple monosomies. However, monosomic strains remained alive and grew as if much (often most) of the damage caused by single mutations had disappeared, revealing an exceptionally large and positive epistatic component of fitness. We looked for functional explanations by analyzing the transcriptomes. There was no evidence of increased (compensatory) gene expression on the monosomic chromosomes. Nor were there signs of the cellular stress response that would be expected if monosomy led to protein destabilization and thus cytotoxicity. Instead, all monosomic strains showed extensive upregulation of genes encoding ribosomal proteins, but in an indiscriminate manner that did not correspond to their altered dosage. This response did not restore the stoichiometry required for efficient biosynthesis, which probably became growth limiting, making all other mutation-induced metabolic defects much less important. In general, the modular structure of the cell leads to an effective fragmentation of the total mutational load. Defects outside the module(s) currently defining fitness lose at least some of their relevance, producing the epiphenomenon of positive interactions between individually negative effects.

    1. Evolutionary Biology
    2. Medicine
    Rion Brattig-Correia, Joana M Almeida ... Paulo Navarro-Costa
    Tools and Resources

    Male germ cells share a common origin across animal species, therefore they likely retain a conserved genetic program that defines their cellular identity. However, the unique evolutionary dynamics of male germ cells coupled with their widespread leaky transcription pose significant obstacles to the identification of the core spermatogenic program. Through network analysis of the spermatocyte transcriptome of vertebrate and invertebrate species, we describe the conserved evolutionary origin of metazoan male germ cells at the molecular level. We estimate the average functional requirement of a metazoan male germ cell to correspond to the expression of approximately 10,000 protein-coding genes, a third of which defines a genetic scaffold of deeply conserved genes that has been retained throughout evolution. Such scaffold contains a set of 79 functional associations between 104 gene expression regulators that represent a core component of the conserved genetic program of metazoan spermatogenesis. By genetically interfering with the acquisition and maintenance of male germ cell identity, we uncover 161 previously unknown spermatogenesis genes and three new potential genetic causes of human infertility. These findings emphasize the importance of evolutionary history on human reproductive disease and establish a cross-species analytical pipeline that can be repurposed to other cell types and pathologies.