Crosstalk between repair pathways elicits Double Strand Breaks in alkylated DNA and implications for the action of temozolomide

  1. Robert P Fuchs  Is a corresponding author
  2. Asako Isogawa
  3. Joao A Paulo
  4. Kazumitsu Onizuka
  5. Tatsuro Takahashi
  6. Ravindra Amunugama
  7. Julien P Duxin
  8. Shingo Fujii
  1. INSERM / AMU, France
  2. CRCM Marseille, France
  3. Harvard Medical School, United States
  4. Tohoku Univ, Sendai, Japan
  5. Kyushu Univ, Fukuoka, Japan
  6. Harvard, BCMP, United States
  7. Copenhagen University, Denmark

Abstract

Temozolomide (TMZ), a DNA methylating agent, is the primary chemotherapeutic drug used in glioblastoma treatment. TMZ induces mostly N-alkylation adducts (N7-methylguanine and N3-methyladenine) and some O6-methylguanine (O6mG). Current models propose that during DNA replication, thymine is incorporated across from O6mG, promoting a futile cycle of mismatch repair (MMR) that leads to DNA double strand breaks (DSBs). To revisit the mechanism of O6mG processing, we reacted plasmid DNA with N-Methyl-N-nitrosourea (MNU), a temozolomide mimic, and incubated it in Xenopus egg-derived extracts. We show that in this system, mismatch repair (MMR) proteins are enriched on MNU-treated DNA and we observe robust, MMR-dependent, repair synthesis. Our evidence also suggests that MMR, initiated at O6mG:C sites, is strongly stimulated in cis by repair processing of other lesions, such as N-alkylation adducts. Importantly, MNU-treated plasmids display DSBs in extracts, the frequency of which increased linearly with the square of alkylation dose. We suggest that DSBs result from two independent repair processes, one involving MMR at O6mG:C sites and the other involving BER acting at a nearby N-alkylation adducts. We propose a new, replication-independent mechanism of action of TMZ, that operates in addition to the well-studied cell cycle dependent mode of action.

Data availability

Source data files have been provided for MS data, gels and blots in main or supplementary figures.

Article and author information

Author details

  1. Robert P Fuchs

    Marseille Medical Genetics UMR1251, INSERM / AMU, Marseille, France
    For correspondence
    robert.fuchs@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1098-4325
  2. Asako Isogawa

    DNA Repair, CRCM Marseille, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Joao A Paulo

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kazumitsu Onizuka

    Institute of Multidisciplinary Research for Advanced Materials, Tohoku Univ, Sendai, Sendai, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tatsuro Takahashi

    Biology, Kyushu Univ, Fukuoka, Fukuoka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Ravindra Amunugama

    BCMP, Harvard, BCMP, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Julien P Duxin

    Center for Protein Research, Copenhagen University, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Shingo Fujii

    DNA Repair, CRCM Marseille, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

No external funding was received for this work.The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Version history

  1. Preprint posted: November 22, 2020 (view preprint)
  2. Received: April 19, 2021
  3. Accepted: July 7, 2021
  4. Accepted Manuscript published: July 8, 2021 (version 1)
  5. Version of Record published: July 19, 2021 (version 2)

Copyright

© 2021, Fuchs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,481
    Page views
  • 170
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert P Fuchs
  2. Asako Isogawa
  3. Joao A Paulo
  4. Kazumitsu Onizuka
  5. Tatsuro Takahashi
  6. Ravindra Amunugama
  7. Julien P Duxin
  8. Shingo Fujii
(2021)
Crosstalk between repair pathways elicits Double Strand Breaks in alkylated DNA and implications for the action of temozolomide
eLife 10:e69544.
https://doi.org/10.7554/eLife.69544

Share this article

https://doi.org/10.7554/eLife.69544

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.