Molecular reconstruction of recurrent evolutionary switching in olfactory receptor specificity

  1. Lucia L Prieto-Godino  Is a corresponding author
  2. Hayden R Schmidt
  3. Richard Benton  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. University of Lausanne, Switzerland

Abstract

Olfactory receptor repertoires exhibit remarkable functional diversity, but how these proteins have evolved is poorly understood. Through analysis of extant and ancestrally-reconstructed drosophilid olfactory receptors from the Ionotropic receptor (Ir) family, we investigated evolution of two organic acid-sensing receptors, Ir75a and Ir75b. Despite their low amino acid identity, we identify a common 'hotspot' in their ligand-binding pocket that has a major effect on changing the specificity of both Irs, as well as at least two distinct functional transitions in Ir75a during evolution. Moreover, we show that odor specificity is refined by changes in additional, receptor-specific sites, including those outside the ligand-binding pocket. Our work reveals how a core, common determinant of ligand-tuning acts within epistatic and allosteric networks of substitutions to lead to functional evolution of olfactory receptors.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3 and 5.

Article and author information

Author details

  1. Lucia L Prieto-Godino

    Neural Circuits and Evolution lab, The Francis Crick Institute, London, United Kingdom
    For correspondence
    lucia.prietogodino@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2980-362X
  2. Hayden R Schmidt

    University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard Benton

    University of Lausanne, Lausanne, Switzerland
    For correspondence
    Richard.Benton@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4305-8301

Funding

European Molecular Biology Organisation (ALTF 940-2019)

  • Hayden R Schmidt

Human Frontier Science Program Young Investigator Award (RGY0073/2011)

  • Richard Benton

Helen Hay Whitney Foundation

  • Hayden R Schmidt

FP7 Ideas: European Research Council (802531)

  • Lucia L Prieto-Godino

Cancer Research UK (FC001594)

  • Lucia L Prieto-Godino

Medical Research Council (FC001594)

  • Lucia L Prieto-Godino

Wellcome Trust (FC001594)

  • Lucia L Prieto-Godino

FP7 Ideas: European Research Council (615094)

  • Richard Benton

FP7 Ideas: European Research Council (833548)

  • Richard Benton

Swiss National Science Foundation Nano-Tera (20NA21_143082)

  • Richard Benton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Prieto-Godino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,005
    views
  • 356
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucia L Prieto-Godino
  2. Hayden R Schmidt
  3. Richard Benton
(2021)
Molecular reconstruction of recurrent evolutionary switching in olfactory receptor specificity
eLife 10:e69732.
https://doi.org/10.7554/eLife.69732

Share this article

https://doi.org/10.7554/eLife.69732

Further reading

    1. Evolutionary Biology
    Yiheng Zhang, Xing Wang ... Xiaoguang Yang
    Research Article

    Although fossil evidence suggests the existence of an early muscular system in the ancient cnidarian jellyfish from the early Cambrian Kuanchuanpu biota (ca. 535 Ma), south China, the mechanisms underlying the feeding and respiration of the early jellyfish are conjectural. Recently, the polyp inside the periderm of olivooids was demonstrated to be a calyx-like structure, most likely bearing short tentacles and bundles of coronal muscles at the edge of the calyx, thus presumably contributing to feeding and respiration. Here, we simulate the contraction and expansion of the microscopic periderm-bearing olivooid Quadrapyrgites via the fluid-structure interaction computational fluid dynamics (CFD) method to investigate their feeding and respiratory activities. The simulations show that the rate of water inhalation by the polyp subumbrella is positively correlated with the rate of contraction and expansion of the coronal muscles, consistent with the previous feeding and respiration hypothesis. The dynamic simulations also show that the frequent inhalation/exhalation of water through the periderm polyp expansion/contraction conducted by the muscular system of Quadrapyrgites most likely represents the ancestral feeding and respiration patterns of Cambrian sedentary medusozoans that predated the rhythmic jet-propelled swimming of the modern jellyfish. Most importantly for these Cambrian microscopic sedentary medusozoans, the increase of body size and stronger capacity of muscle contraction may have been indispensable in the stepwise evolution of active feeding and subsequent swimming in a higher flow (or higher Reynolds number) environment.

    1. Evolutionary Biology
    Silas Tittes, Anne Lorant ... Jeffrey Ross-Ibarra
    Research Article

    What is the genetic architecture of local adaptation and what is the geographic scale over which it operates? We investigated patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize. However, for both maize and teosinte, selective sweeps are also frequently shared by several populations, and often between subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration, though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source of beneficial alleles for maize, even after domestication, and that maize populations have facilitated adaptation in teosinte by moving beneficial alleles across the landscape. Taken together, our results suggest local adaptation in maize and teosinte has an intermediate geographic scale, one that is larger than individual populations but smaller than the species range.