A locomotor neural circuit persists and functions similarly in larvae and adult Drosophila
Abstract
Individual neurons can undergo drastic structural changes, known as neuronal remodeling or structural plasticity. One example of this is in response to hormones, such as during puberty in mammals or metamorphosis in insects. However, in each of these examples it remains unclear whether the remodeled neuron resumes prior patterns of connectivity, and if so, whether the persistent circuits drive similar behaviors. Here, we utilize a well-characterized neural circuit in the Drosophila larva: the Moonwalking Descending Neuron (MDN) circuit. We previously showed that larval MDN induces backward crawling, and synapses onto the Pair1 interneuron to inhibit forward crawling (Carreira-Rosario et al., 2018). MDN is remodeled during metamorphosis and regulates backward walking in the adult fly. We investigated whether Pair1 is remodeled during metamorphosis and functions within the MDN circuit during adulthood. We assayed morphology and molecular markers to demonstrate that Pair1 is remodeled during metamorphosis and persists in the adult fly. MDN-Pair1 connectivity is lost during early pupal stages, when both neurons are severely pruned back, but connectivity is re-established at mid-pupal stages and persist into the adult. In the adult, optogenetic activation of Pair1 resulted in arrest of forward locomotion, similar to what is observed in larvae. Thus, the MDN-Pair1 neurons are an interneuronal circuit - a pair of synaptically connected interneurons – that is re-established during metamorphosis, yet generates similar locomotor behavior at both larval and adult stages.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
Howard Hughes Medical Institute
- Chris Q Doe
National Institutes of Health (HD27056)
- Kristen Lee
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Ronald L Calabrese, Emory University, United States
Version history
- Preprint posted: April 27, 2021 (view preprint)
- Received: April 27, 2021
- Accepted: July 13, 2021
- Accepted Manuscript published: July 14, 2021 (version 1)
- Accepted Manuscript updated: July 15, 2021 (version 2)
- Version of Record published: July 22, 2021 (version 3)
Copyright
© 2021, Lee & Doe
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,780
- Page views
-
- 214
- Downloads
-
- 12
- Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
In line with the Research Domain Criteria (RDoC) , we set out to investigate the brain basis of psychopathology within a transdiagnostic, dimensional framework. We performed an integrative structural-functional linked independent component analysis to study the relationship between brain measures and a broad set of biobehavioral measures in a sample (n = 295) with both mentally healthy participants and patients with diverse non-psychotic psychiatric disorders (i.e. mood, anxiety, addiction, and neurodevelopmental disorders). To get a more complete understanding of the underlying brain mechanisms, we used gray and white matter measures for brain structure and both resting-state and stress scans for brain function. The results emphasize the importance of the executive control network (ECN) during the functional scans for the understanding of transdiagnostic symptom dimensions. The connectivity between the ECN and the frontoparietal network in the aftermath of stress was correlated with symptom dimensions across both the cognitive and negative valence domains, and also with various other health-related biological and behavioral measures. Finally, we identified a multimodal component that was specifically associated with the diagnosis of autism spectrum disorder (ASD). The involvement of the default mode network, precentral gyrus, and thalamus across the different modalities of this component may reflect the broad functional domains that may be affected in ASD, like theory of mind, motor problems, and sensitivity to sensory stimuli, respectively. Taken together, the findings from our extensive, exploratory analyses emphasize the importance of a dimensional and more integrative approach for getting a better understanding of the brain basis of psychopathology.
-
- Evolutionary Biology
- Neuroscience
The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed 2 groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.