Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster

  1. Cesar Nava Gonzales
  2. Quintyn McKaughan
  3. Eric A Bushong
  4. Kalyani Cauwenberghs
  5. Renny Ng
  6. Matthew Madany
  7. Mark H Ellisman
  8. Chih-Ying Su  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of California San Diego, United States
  3. National Center for Microscopy and Imaging Research, University of California, San Diego, United States

Abstract

The biophysical properties of sensory neurons are influenced by their morphometric and morphological features, whose precise measurements require high-quality volume electron microscopy (EM). However, systematic surveys of nanoscale characteristics for identified neurons are scarce. Here, we characterize the morphology of Drosophila olfactory receptor neurons (ORNs) across the majority of genetically identified sensory hairs. By analyzing serial block-face electron microscopy (SBEM) images of cryofixed antennal tissues, we compile an extensive morphometric dataset based on 122 reconstructed 3D models for 33 of the 40 identified antennal ORN types. Additionally, we observe multiple novel features - including extracellular vacuoles within sensillum lumen, intricate dendritic branching, mitochondria enrichment in select ORNs, novel sensillum types, and empty sensilla containing no neurons - which raise new questions pertinent to cell biology and sensory neurobiology. Our systematic survey is critical for future investigations into how the size and shape of sensory neurons influence their responses, sensitivity and circuit function.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Table 1, Table 2 and Individual datasets.The SBEM image volumes are available in the Cell Image Library (http://www.cellimagelibrary.org/home). The accession numbers are CIL:54606 (Or22a/ab3A-labeled volume); CIL:54614 (Or7a/ab4A-labeled volume); CIL:54610 (Or56a/ab4B-labeled volume); CIL:54611 (Ir75c/ac3AII-labeled volume); CIL:54612 (Or47a/ab5B-labeled volume); CIL:54607 and CIL:54608 (Or47b/at4A-labeled volumes); CIL:54609 (Or88a/at4C-labeled volume).

Article and author information

Author details

  1. Cesar Nava Gonzales

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Quintyn McKaughan

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric A Bushong

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kalyani Cauwenberghs

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Renny Ng

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew Madany

    National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark H Ellisman

    National Center for Microscopy and Imaging Research,, University of California, San Diego, Le Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Chih-Ying Su

    University of California, San Diego, La Jolla, United States
    For correspondence
    c8su@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0005-1890

Funding

National Institute on Deafness and Other Communication Disorders (R01DC016466)

  • Chih-Ying Su

National Institute on Deafness and Other Communication Disorders (R01DC015519)

  • Chih-Ying Su

National Institute on Deafness and Other Communication Disorders (R21DC108912)

  • Chih-Ying Su

National Institute of Neurological Disorders and Stroke (U24NS120055)

  • Mark H Ellisman

National Institute of General Medical Sciences (R24GM137200)

  • Mark H Ellisman

National Institute of General Medical Sciences (R01GM082949)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Albert Cardona, University of Cambridge, United Kingdom

Version history

  1. Preprint posted: April 29, 2021 (view preprint)
  2. Received: April 29, 2021
  3. Accepted: August 20, 2021
  4. Accepted Manuscript published: August 23, 2021 (version 1)
  5. Version of Record published: September 1, 2021 (version 2)

Copyright

© 2021, Nava Gonzales et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,676
    views
  • 390
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cesar Nava Gonzales
  2. Quintyn McKaughan
  3. Eric A Bushong
  4. Kalyani Cauwenberghs
  5. Renny Ng
  6. Matthew Madany
  7. Mark H Ellisman
  8. Chih-Ying Su
(2021)
Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster
eLife 10:e69896.
https://doi.org/10.7554/eLife.69896

Share this article

https://doi.org/10.7554/eLife.69896

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.