Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster

  1. Cesar Nava Gonzales
  2. Quintyn McKaughan
  3. Eric A Bushong
  4. Kalyani Cauwenberghs
  5. Renny Ng
  6. Matthew Madany
  7. Mark H Ellisman
  8. Chih-Ying Su  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of California San Diego, United States
  3. National Center for Microscopy and Imaging Research, University of California, San Diego, United States

Abstract

The biophysical properties of sensory neurons are influenced by their morphometric and morphological features, whose precise measurements require high-quality volume electron microscopy (EM). However, systematic surveys of nanoscale characteristics for identified neurons are scarce. Here, we characterize the morphology of Drosophila olfactory receptor neurons (ORNs) across the majority of genetically identified sensory hairs. By analyzing serial block-face electron microscopy (SBEM) images of cryofixed antennal tissues, we compile an extensive morphometric dataset based on 122 reconstructed 3D models for 33 of the 40 identified antennal ORN types. Additionally, we observe multiple novel features - including extracellular vacuoles within sensillum lumen, intricate dendritic branching, mitochondria enrichment in select ORNs, novel sensillum types, and empty sensilla containing no neurons - which raise new questions pertinent to cell biology and sensory neurobiology. Our systematic survey is critical for future investigations into how the size and shape of sensory neurons influence their responses, sensitivity and circuit function.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Table 1, Table 2 and Individual datasets.The SBEM image volumes are available in the Cell Image Library (http://www.cellimagelibrary.org/home). The accession numbers are CIL:54606 (Or22a/ab3A-labeled volume); CIL:54614 (Or7a/ab4A-labeled volume); CIL:54610 (Or56a/ab4B-labeled volume); CIL:54611 (Ir75c/ac3AII-labeled volume); CIL:54612 (Or47a/ab5B-labeled volume); CIL:54607 and CIL:54608 (Or47b/at4A-labeled volumes); CIL:54609 (Or88a/at4C-labeled volume).

Article and author information

Author details

  1. Cesar Nava Gonzales

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Quintyn McKaughan

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric A Bushong

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kalyani Cauwenberghs

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Renny Ng

    University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Matthew Madany

    National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark H Ellisman

    National Center for Microscopy and Imaging Research,, University of California, San Diego, Le Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Chih-Ying Su

    University of California, San Diego, La Jolla, United States
    For correspondence
    c8su@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0005-1890

Funding

National Institute on Deafness and Other Communication Disorders (R01DC016466)

  • Chih-Ying Su

National Institute on Deafness and Other Communication Disorders (R01DC015519)

  • Chih-Ying Su

National Institute on Deafness and Other Communication Disorders (R21DC108912)

  • Chih-Ying Su

National Institute of Neurological Disorders and Stroke (U24NS120055)

  • Mark H Ellisman

National Institute of General Medical Sciences (R24GM137200)

  • Mark H Ellisman

National Institute of General Medical Sciences (R01GM082949)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Nava Gonzales et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,229
    views
  • 443
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cesar Nava Gonzales
  2. Quintyn McKaughan
  3. Eric A Bushong
  4. Kalyani Cauwenberghs
  5. Renny Ng
  6. Matthew Madany
  7. Mark H Ellisman
  8. Chih-Ying Su
(2021)
Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster
eLife 10:e69896.
https://doi.org/10.7554/eLife.69896

Share this article

https://doi.org/10.7554/eLife.69896

Further reading

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.