Notch-induced endoplasmic reticulum-associated degradation governs mouse thymocyte β- selection

  1. Xia Liu
  2. Jingjing Yu
  3. Longyong Xu
  4. Katharine Umphred-Wilson
  5. Fanglue Peng
  6. Yao Ding
  7. Brendan M Barton
  8. Xiangdong Lv
  9. Michael Y Zhao
  10. Shengyi Sun
  11. Yuning Hong
  12. Ling Qi
  13. Stanley Adoro  Is a corresponding author
  14. Xi Chen  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Case Western Reserve University, United States
  3. Wayne State University, United States
  4. La Trobe University, Australia
  5. University of Michigan-Ann Arbor, United States

Abstract

Signals from the pre-T cell receptor and Notch coordinately instruct b-selection of CD4-CD8- double negative (DN) thymocytes to generate ab T cells in the thymus. However, how these signals ensure a high-fidelity proteome and safeguard the clonal diversification of the pre-selection TCR repertoire given the considerable translational activity imposed by b-selection is largely unknown. Here, we identify the endoplasmic reticulum (ER)-associated degradation (ERAD) machinery as a critical proteostasis checkpoint during b-selection. Expression of the SEL1L-HRD1 complex, the most conserved branch of ERAD, is directly regulated by the transcriptional activity of the Notch intracellular domain. Deletion of Sel1l impaired DN3 to DN4 thymocyte transition and severely impaired mouse ab T cell development. Mechanistically, Sel1l deficiency induced unresolved ER stress that triggered thymocyte apoptosis through the PERK pathway. Accordingly, genetically inactivating PERK rescued T cell development from Sel1l-deficient thymocytes. In contrast, IRE1a/XBP1 pathway was induced as a compensatory adaptation to alleviate Sel1l-deficiency induced ER stress. Dual loss of Sel1l and Xbp1 markedly exacerbated the thymic defect. Our study reveals a critical developmental signal controlled proteostasis mechanism that enforces T cell development to ensure a healthy adaptive immunity.

Data availability

Sequencing data have been deposited in GEO under accession code GSE173993.All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures.

The following data sets were generated

Article and author information

Author details

  1. Xia Liu

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jingjing Yu

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Longyong Xu

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharine Umphred-Wilson

    Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6416-0466
  5. Fanglue Peng

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yao Ding

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brendan M Barton

    Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiangdong Lv

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Y Zhao

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Shengyi Sun

    Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yuning Hong

    Department of Chemistry and Physics, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Ling Qi

    Molecular and Integrative Physiology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Stanley Adoro

    Case Western Reserve University, Cleveland, United States
    For correspondence
    sxa726@case.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Xi Chen

    Baylor College of Medicine, Houston, United States
    For correspondence
    xi.chen@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7995-6202

Funding

National Heart, Lung, and Blood Institute (R01HL146642)

  • Xi Chen

Cancer Prevention and Research Institute of Texas (RP160283)

  • Fanglue Peng

National Institute of Allergy and Infectious Diseases (R01 AI1143992)

  • Stanley Adoro

National Cancer Institute (R37CA228304)

  • Xi Chen

National Cancer Institute (K22CA218467)

  • Stanley Adoro

National Cancer Institute (P50CA186784)

  • Xi Chen

National Institute of General Medical Sciences (R35GM130292)

  • Ling Qi

DOD Peer Reviewed Cancer Research Program (W81XWH1910524)

  • Xi Chen

DOD Peer Reviewed Cancer Research Program (W81XWH1910306)

  • Stanley Adoro

Congressionally Directed Medical Research Programs (W81XWH1910035)

  • Xiangdong Lv

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols described in this study were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee (protocol: AN-6813) or Case Western Reserve University Institutional Animal Care and Use Committee (protocol: 2017-0055).

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,711
    views
  • 286
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xia Liu
  2. Jingjing Yu
  3. Longyong Xu
  4. Katharine Umphred-Wilson
  5. Fanglue Peng
  6. Yao Ding
  7. Brendan M Barton
  8. Xiangdong Lv
  9. Michael Y Zhao
  10. Shengyi Sun
  11. Yuning Hong
  12. Ling Qi
  13. Stanley Adoro
  14. Xi Chen
(2021)
Notch-induced endoplasmic reticulum-associated degradation governs mouse thymocyte β- selection
eLife 10:e69975.
https://doi.org/10.7554/eLife.69975

Share this article

https://doi.org/10.7554/eLife.69975

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Roger Huerlimann, Natacha Roux ... Timothy Ravasi
    Research Article

    Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.