Abstract

Shotgun metagenomic sequencing is a powerful approach to study microbiomes in an unbiased manner and of increasing relevance for identifying novel enzymatic functions. However, the potential of metagenomics to relate from microbiome composition to function has thus far been underutilized. Here, we introduce the Metagenomics Genome-Phenome Association (MetaGPA) study framework, which allows linking genetic information in metagenomes with a dedicated functional phenotype. We applied MetaGPA to identify enzymes associated with cytosine modifications in environmental samples. From the 2365 genes that met our significance criteria, we confirm known pathways for cytosine modifications and proposed novel cytosine-modifying mechanisms. Specifically, we characterized and identified a novel nucleic acid modifying enzyme, 5-hydroxymethylcytosine carbamoyltransferase, that catalyzes the formation of a previously unknown cytosine modification, 5-carbamoyloxymethylcytosine, in DNA and RNA. Our work introduces MetaGPA as a novel and versatile tool for advancing functional metagenomics.

Data availability

All raw and processed sequencing data generated in this study have been submitted to the NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA714147.

The following data sets were generated

Article and author information

Author details

  1. Weiwei Yang

    Research department, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Weiwei Yang, The author is employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  2. Yu-Cheng Lin

    Research department, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Yu-Cheng Lin, The author was an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  3. William Johnson

    Research department, New England Biolabs Inc, Ipswich, United States
    Competing interests
    William Johnson, The author was an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  4. Nan Dai

    RNA Biology, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Nan Dai, The author is an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  5. Romualdas Vaisvila

    Research department, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Romualdas Vaisvila, The author is an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  6. Peter Weigele

    Research department, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Peter Weigele, The author is an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  7. Yan-Jiun Lee

    Research department, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Yan-Jiun Lee, The author is an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  8. Ivan R Corrêa Jr

    RNA Biology, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Ivan R Corrêa, The author is an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3169-6878
  9. Ira Schildkraut

    Research department, New England Biolabs Inc, Ipswich, United States
    Competing interests
    Ira Schildkraut, The author is an employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
  10. Laurence Ettwiller

    Research department, New England Biolabs Inc, Ipswich, United States
    For correspondence
    laurence.ettwiller@gmail.com
    Competing interests
    Laurence Ettwiller, The author is employee of New England Biolabs Inc. a manufacturer of restriction enzymes and molecular reagents..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3957-6539

Funding

New England Biolabs (no data)

  • Weiwei Yang
  • Yu-Cheng Lin
  • William Johnson
  • Nan Dai
  • Romualdas Vaisvila
  • Peter Weigele
  • Yan-Jiun Lee
  • Ivan R Corrêa Jr
  • Ira Schildkraut
  • Laurence Ettwiller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. María Mercedes Zambrano, CorpoGen, Colombia

Version history

  1. Preprint posted: March 23, 2021 (view preprint)
  2. Received: May 4, 2021
  3. Accepted: November 5, 2021
  4. Accepted Manuscript published: November 8, 2021 (version 1)
  5. Version of Record published: December 14, 2021 (version 2)

Copyright

© 2021, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,473
    Page views
  • 192
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weiwei Yang
  2. Yu-Cheng Lin
  3. William Johnson
  4. Nan Dai
  5. Romualdas Vaisvila
  6. Peter Weigele
  7. Yan-Jiun Lee
  8. Ivan R Corrêa Jr
  9. Ira Schildkraut
  10. Laurence Ettwiller
(2021)
A Genome-Phenome Association study in native microbiomes identifies a mechanism for cytosine modification in DNA and RNA
eLife 10:e70021.
https://doi.org/10.7554/eLife.70021

Further reading

    1. Ecology
    2. Genetics and Genomics
    Franziska Grathwol, Christian Roos ... Gisela H Kopp
    Research Advance

    Adulis, located on the Red Sea coast in present-day Eritrea, was a bustling trading centre between the first and seventh centuries CE. Several classical geographers--Agatharchides of Cnidus, Pliny the Elder, Strabo-noted the value of Adulis to Greco--Roman Egypt, particularly as an emporium for living animals, including baboons (Papio spp.). Though fragmentary, these accounts predict the Adulite origins of mummified baboons in Ptolemaic catacombs, while inviting questions on the geoprovenance of older (Late Period) baboons recovered from Gabbanat el-Qurud ('Valley of the Monkeys'), Egypt. Dated to ca. 800-540 BCE, these animals could extend the antiquity of Egyptian-Adulite trade by as much as five centuries. Previously, Dominy et al. (2020) used stable istope analysis to show that two New Kingdom specimens of P. hamadryas originate from the Horn of Africa. Here, we report the complete mitochondrial genomes from a mummified baboon from Gabbanat el-Qurud and 14 museum specimens with known provenance together with published georeferenced mitochondrial sequence data. Phylogenetic assignment connects the mummified baboon to modern populations of Papio hamadryas in Eritrea, Ethiopia, and eastern Sudan. This result, assuming geographical stability of phylogenetic clades, corroborates Greco-Roman historiographies by pointing toward present-day Eritrea, and by extension Adulis, as a source of baboons for Late Period Egyptians. It also establishes geographic continuity with baboons from the fabled Land of Punt (Dominy et al., 2020), giving weight to speculation that Punt and Adulis were essentially the same trading centres separated by a thousand years of history.

    1. Genetics and Genomics
    Bhoomi Madhu, Mohammed Farhan Lakdawala, Tina L Gumienny
    Research Article

    Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor β (TGF-β) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-β in tailoring a suite of bacteria-specific host defenses.