Cost-precision trade-off relation determines the optimal morphogen gradient for accurate biological pattern formation

  1. Yonghyun Song
  2. Changbong Hyeon  Is a corresponding author
  1. Korea Institute for Advanced Study, Republic of Korea

Abstract

Spatial boundaries formed during animal development originate from the pre-patterning of tissues by signaling molecules, called morphogens. The accuracy of boundary location is limited by the fluctuations of morphogen concentration that thresholds the expression level of target gene. Producing more morphogen molecules, which gives rise to smaller relative fluctuations, would better serve to shape more precise target boundaries; however, it incurs more thermodynamic cost. In the classical diffusion-depletion model of morphogen profile formation, the morphogen molecules synthesized from a local source display an exponentially decaying concentration profile with a characteristic length λ. Our theory suggests that in order to attain a precise profile with the minimal cost, λ should be roughly half the distance to the target boundary position from the source. Remarkably, we find that the profiles of morphogens that pattern the Drosophila embryo and wing imaginal disk are formed with nearly optimal λ. Our finding underscores the thermodynamic cost as a key physical constraint in the morphogen profile formation in Drosophila development.

Data availability

All data analyzed in this study are from the figures of previously published works, shown in Figure 2-S1 and Appendix 2 Figure 3. The reference associated with each panel is provided in the respective figure legend.

Article and author information

Author details

  1. Yonghyun Song

    Korea Institute for Advanced Study, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Changbong Hyeon

    Korea Institute for Advanced Study, Seoul, Republic of Korea
    For correspondence
    hyeoncb@kias.re.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4844-7237

Funding

Korea Institute for Advanced Study (CG067102)

  • Yonghyun Song

Korea Institute for Advanced Study (CG035003)

  • Changbong Hyeon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gordon J Berman, Emory University, United States

Version history

  1. Preprint posted: April 14, 2021 (view preprint)
  2. Received: May 4, 2021
  3. Accepted: August 13, 2021
  4. Accepted Manuscript published: August 17, 2021 (version 1)
  5. Version of Record published: September 22, 2021 (version 2)

Copyright

© 2021, Song & Hyeon

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,200
    views
  • 204
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yonghyun Song
  2. Changbong Hyeon
(2021)
Cost-precision trade-off relation determines the optimal morphogen gradient for accurate biological pattern formation
eLife 10:e70034.
https://doi.org/10.7554/eLife.70034

Share this article

https://doi.org/10.7554/eLife.70034

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Cheng
    Research Article

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm), however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    Vartika Sharma, Nalani Sachan ... Ashim Mukherjee
    Research Article

    The Wnt/Wg pathway controls myriads of biological phenomena throughout the development and adult life of all organisms across the phyla. Thus, an aberrant Wnt signaling is associated with a wide range of pathologies in humans. Tight regulation of Wnt/Wg signaling is required to maintain proper cellular homeostasis. Here, we report a novel role of E3 ubiquitin ligase Deltex in Wg signaling regulation. Drosophila dx genetically interacts with wg and its pathway components. Furthermore, Dx LOF results in a reduced spreading of Wg while its over-expression expands the diffusion gradient of the morphogen. We attribute this change in Wg gradient to the endocytosis of Wg through Dx which directly affects the short- and long-range Wg targets. We also demonstrate the role of Dx in regulating Wg effector Armadillo where Dx down-regulates Arm through proteasomal degradation. We also showed the conservation of Dx function in the mammalian system where DTX1 is shown to bind with β-catenin and facilitates its proteolytic degradation, spotlighting a novel step that potentially modulates Wnt/Wg signaling cascade.