Reversal of the adipostat control of torpor during migration in hummingbirds
Abstract
Many small endotherms use torpor to reduce metabolic rate and manage daily energy balance. However, the physiological 'rules' that govern torpor use are unclear. We tracked torpor use and body composition in ruby-throated hummingbirds (Archilochus colubris), a long-distance migrant, throughout the summer using respirometry and quantitative magnetic resonance. During the mid-summer, birds entered torpor at consistently low fat stores (~5% of body mass), and torpor duration was negatively related to evening fat load. Remarkably, this energy-emergency strategy was abandoned in the late summer when birds accumulated fat for migration. During the migration period, birds were more likely to enter torpor on nights when they had higher fat stores, and fat gain was positively correlated with the amount of torpor used. These findings demonstrate the versatility of torpor throughout the annual cycle and suggest a fundamental change in physiological feedback between adiposity and torpor during migration. Moreover, this study highlights the underappreciated importance of facultative heterothermy in migratory ecology.
Data availability
All data is available in the main text or the supplementary materials. Analyses reported in this article can be reproduced using the data and code provided by Eberts et al., (2021).
-
Data from: Reversal of the adipostat control of torpor during migration in hummingbirdsDryad Digital Repository, doi:10.5061/dryad.p8cz8w9qg.
Article and author information
Author details
Funding
Natural Sciences and Engineering Research Council of Canada (06129-2015 RGPIN)
- Kenneth C Welch Jr
Human Frontier Science Program (RGP0062/2016)
- Kenneth C Welch Jr
Natural Sciences and Engineering Research Council of Canada Discovery Grant (05245-2015 RGPIN)
- Chris Guglielmo
Canada Foundation for Innovation, Ontario Research Fund
- Chris Guglielmo
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Details of animal husbandry and all experiments were approved by the University of Toronto (protocol # 20011649) and the University of Western Ontario Animal Care Committees (protocol #2018-092). Hummingbirds were captured under Ontario Collecting Permit SC-00041.
Copyright
© 2021, Eberts et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,027
- views
-
- 259
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.