Reversal of the adipostat control of torpor during migration in hummingbirds

  1. Erich R Eberts  Is a corresponding author
  2. Christopher G Guglielmo
  3. Kenneth C Welch Jr
  1. University of Toronto, Canada
  2. University of Western Ontario, Canada

Abstract

Many small endotherms use torpor to reduce metabolic rate and manage daily energy balance. However, the physiological 'rules' that govern torpor use are unclear. We tracked torpor use and body composition in ruby-throated hummingbirds (Archilochus colubris), a long-distance migrant, throughout the summer using respirometry and quantitative magnetic resonance. During the mid-summer, birds entered torpor at consistently low fat stores (~5% of body mass), and torpor duration was negatively related to evening fat load. Remarkably, this energy-emergency strategy was abandoned in the late summer when birds accumulated fat for migration. During the migration period, birds were more likely to enter torpor on nights when they had higher fat stores, and fat gain was positively correlated with the amount of torpor used. These findings demonstrate the versatility of torpor throughout the annual cycle and suggest a fundamental change in physiological feedback between adiposity and torpor during migration. Moreover, this study highlights the underappreciated importance of facultative heterothermy in migratory ecology.

Data availability

All data is available in the main text or the supplementary materials. Analyses reported in this article can be reproduced using the data and code provided by Eberts et al., (2021).

The following data sets were generated

Article and author information

Author details

  1. Erich R Eberts

    Department of Biological Sciences, University of Toronto, Toronto, Canada
    For correspondence
    erich.eberts@mail.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4259-8752
  2. Christopher G Guglielmo

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Kenneth C Welch Jr

    Department of Biological Sciences, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3283-6510

Funding

Natural Sciences and Engineering Research Council of Canada (06129-2015 RGPIN)

  • Kenneth C Welch Jr

Human Frontier Science Program (RGP0062/2016)

  • Kenneth C Welch Jr

Natural Sciences and Engineering Research Council of Canada Discovery Grant (05245-2015 RGPIN)

  • Christopher G Guglielmo

Canada Foundation for Innovation, Ontario Research Fund

  • Christopher G Guglielmo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Details of animal husbandry and all experiments were approved by the University of Toronto (protocol # 20011649) and the University of Western Ontario Animal Care Committees (protocol #2018-092). Hummingbirds were captured under Ontario Collecting Permit SC-00041.

Copyright

© 2021, Eberts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,944
    views
  • 246
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erich R Eberts
  2. Christopher G Guglielmo
  3. Kenneth C Welch Jr
(2021)
Reversal of the adipostat control of torpor during migration in hummingbirds
eLife 10:e70062.
https://doi.org/10.7554/eLife.70062

Share this article

https://doi.org/10.7554/eLife.70062

Further reading

    1. Ecology
    Chao Wen, Yuyi Lu ... Lars Chittka
    Research Article

    Bumblebees (Bombus terrestris) have been shown to engage in string-pulling behavior to access rewards. The objective of this study was to elucidate whether bumblebees display means-end comprehension in a string-pulling task. We presented bumblebees with two options: one where a string was connected to an artificial flower containing a reward and the other presenting an interrupted string. Bumblebees displayed a consistent preference for pulling connected strings over interrupted ones after training with a stepwise pulling technique. When exposed to novel string colors, bees continued to exhibit a bias towards pulling the connected string. This suggests that bumblebees engage in featural generalization of the visual display of the string connected to the flower in this task. If the view of the string connected to the flower was restricted during the training phase, the proportion of bumblebees choosing the connected strings significantly decreased. Similarly, when the bumblebees were confronted with coiled connected strings during the testing phase, they failed to identify and reject the interrupted strings. This finding underscores the significance of visual consistency in enabling the bumblebees to perform the task successfully. Our results suggest that bumblebees’ ability to distinguish between continuous strings and interrupted strings relies on a combination of image matching and associative learning, rather than means-end understanding. These insights contribute to a deeper understanding of the cognitive processes employed by bumblebees when tackling complex spatial tasks.