Reversal of the adipostat control of torpor during migration in hummingbirds

  1. Erich R Eberts  Is a corresponding author
  2. Christopher G Guglielmo
  3. Kenneth C Welch Jr
  1. University of Toronto, Canada
  2. University of Western Ontario, Canada

Abstract

Many small endotherms use torpor to reduce metabolic rate and manage daily energy balance. However, the physiological 'rules' that govern torpor use are unclear. We tracked torpor use and body composition in ruby-throated hummingbirds (Archilochus colubris), a long-distance migrant, throughout the summer using respirometry and quantitative magnetic resonance. During the mid-summer, birds entered torpor at consistently low fat stores (~5% of body mass), and torpor duration was negatively related to evening fat load. Remarkably, this energy-emergency strategy was abandoned in the late summer when birds accumulated fat for migration. During the migration period, birds were more likely to enter torpor on nights when they had higher fat stores, and fat gain was positively correlated with the amount of torpor used. These findings demonstrate the versatility of torpor throughout the annual cycle and suggest a fundamental change in physiological feedback between adiposity and torpor during migration. Moreover, this study highlights the underappreciated importance of facultative heterothermy in migratory ecology.

Data availability

All data is available in the main text or the supplementary materials. Analyses reported in this article can be reproduced using the data and code provided by Eberts et al., (2021).

The following data sets were generated

Article and author information

Author details

  1. Erich R Eberts

    Department of Biological Sciences, University of Toronto, Toronto, Canada
    For correspondence
    erich.eberts@mail.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4259-8752
  2. Christopher G Guglielmo

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Kenneth C Welch Jr

    Department of Biological Sciences, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3283-6510

Funding

Natural Sciences and Engineering Research Council of Canada (06129-2015 RGPIN)

  • Kenneth C Welch Jr

Human Frontier Science Program (RGP0062/2016)

  • Kenneth C Welch Jr

Natural Sciences and Engineering Research Council of Canada Discovery Grant (05245-2015 RGPIN)

  • Christopher G Guglielmo

Canada Foundation for Innovation, Ontario Research Fund

  • Christopher G Guglielmo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Details of animal husbandry and all experiments were approved by the University of Toronto (protocol # 20011649) and the University of Western Ontario Animal Care Committees (protocol #2018-092). Hummingbirds were captured under Ontario Collecting Permit SC-00041.

Reviewing Editor

  1. Chima Nwaogu, University of Cape Town, South Africa

Publication history

  1. Received: May 5, 2021
  2. Preprint posted: May 15, 2021 (view preprint)
  3. Accepted: November 19, 2021
  4. Accepted Manuscript published: December 6, 2021 (version 1)
  5. Accepted Manuscript updated: December 7, 2021 (version 2)
  6. Version of Record published: December 31, 2021 (version 3)
  7. Version of Record updated: January 10, 2022 (version 4)

Copyright

© 2021, Eberts et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,283
    Page views
  • 168
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erich R Eberts
  2. Christopher G Guglielmo
  3. Kenneth C Welch Jr
(2021)
Reversal of the adipostat control of torpor during migration in hummingbirds
eLife 10:e70062.
https://doi.org/10.7554/eLife.70062

Further reading

    1. Ecology
    2. Genetics and Genomics
    Daniel J Richter et al.
    Research Article

    Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the ‘seascape’) by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.

    1. Ecology
    2. Evolutionary Biology
    Eve B Cooper et al.
    Feature Article Updated

    Of all the non-human primate species studied by researchers, the rhesus macaque (Macaca mulatta) is likely the most widely used across biological disciplines. Rhesus macaques have thrived during the Anthropocene and now have the largest natural range of any non-human primate. They are highly social, exhibit marked genetic diversity, and display remarkable niche flexibility (which allows them to live in a range of habitats and survive on a variety of diets). These characteristics mean that rhesus macaques are well-suited for understanding the links between sociality, health and fitness, and also for investigating intra-specific variation, adaptation and other topics in evolutionary ecology.