Memory recall involves a transient break in excitatory-inhibitory balance

  1. Renée S Koolschijn  Is a corresponding author
  2. Anna Shpektor
  3. William T Clarke
  4. I Betina Ip
  5. David Dupret
  6. Uzay E Emir
  7. Helen C Barron  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Purdue University, United States

Abstract

The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism.

Data availability

The data and code used in this study are available via the MRC BNDU Data Sharing PlatformThe data is available here:https://data.mrc.ox.ac.uk/data-set/fmri-fmrs-inferenceDOI: https://doi.org/10.5287/bodleian:vmJOOm7KDThe code is available here:https://data.mrc.ox.ac.uk/data-set/frms-codeDOI: https://doi.org/10.5287/bodleian:8JwYayQmD

Article and author information

Author details

  1. Renée S Koolschijn

    University of Oxford, Oxford, United Kingdom
    For correspondence
    renee.koolschijn@keble.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9553-4213
  2. Anna Shpektor

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. William T Clarke

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. I Betina Ip

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3544-0711
  5. David Dupret

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Uzay E Emir

    school of health science, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5376-0431
  7. Helen C Barron

    University of Oxford, Oxford, United Kingdom
    For correspondence
    helen.barron@merton.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Engineering and Physical Sciences Research Council (EP/L016052/1)

  • Renée S Koolschijn

Royal Society Dorothy Hodgkin Research Fellowship

  • I Betina Ip

Wellcome Trust (203836/Z/16/Z)

  • Anna Shpektor

Biotechnology and Biological Sciences Research Council (BB/N0059TX/1)

  • David Dupret

Medical Research Council (MC_UU_12024/3)

  • David Dupret

John Fell Fund, University of Oxford (153/046)

  • Helen C Barron

Wellcome Centre for Integrative Neuroimaging (Seed grant)

  • Helen C Barron

Merton College, University of Oxford (JRF)

  • Helen C Barron

Medical Research Council (MC_UU_12024/3)

  • Helen C Barron

Wellcome Trust (203139/Z/16/Z)

  • Renée S Koolschijn
  • Anna Shpektor
  • William T Clarke
  • I Betina Ip
  • Helen C Barron

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave informed written consent.All experiments were approved by the University of Oxford ethics committee (reference number R43594/RE001).

Reviewing Editor

  1. Muireann Irish, University of Sydney, Australia

Publication history

  1. Preprint posted: November 27, 2020 (view preprint)
  2. Received: May 5, 2021
  3. Accepted: September 7, 2021
  4. Accepted Manuscript published: October 8, 2021 (version 1)
  5. Version of Record published: October 14, 2021 (version 2)

Copyright

© 2021, Koolschijn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,384
    Page views
  • 353
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Renée S Koolschijn
  2. Anna Shpektor
  3. William T Clarke
  4. I Betina Ip
  5. David Dupret
  6. Uzay E Emir
  7. Helen C Barron
(2021)
Memory recall involves a transient break in excitatory-inhibitory balance
eLife 10:e70071.
https://doi.org/10.7554/eLife.70071
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article Updated

    Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2–3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.

    1. Neuroscience
    Maria Cecilia Martinez, Camila Lidia Zold ... Mariano Andrés Belluscio
    Research Article

    The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.