Expression of a CO2-permeable aquaporin enhances mesophyll conductance in the C4 species Setaria viridis

  1. Maria Ermakova  Is a corresponding author
  2. Hannah Osborn
  3. Michael Groszmann
  4. Soumi Bala
  5. Andrew Bowerman
  6. Samantha McGaughey
  7. Caitlin Byrt
  8. Hugo Alonso-cantabrana
  9. Steve Tyerman
  10. Robert T Furbank
  11. Robert E Sharwood  Is a corresponding author
  12. Suzanne von Caemmerer
  1. Australian National University, Australia
  2. University of Adelaide, Australia
  3. Western Sydney University, Australia

Abstract

A fundamental limitation of photosynthetic carbon fixation is the availability of CO2. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of S. viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas-exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Maria Ermakova

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    For correspondence
    maria.ermakova@anu.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8466-4186
  2. Hannah Osborn

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Groszmann

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Soumi Bala

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew Bowerman

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Samantha McGaughey

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Caitlin Byrt

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Hugo Alonso-cantabrana

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5462-5861
  9. Steve Tyerman

    ARC Centre of Excellence in Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert T Furbank

    ARC Centre of Excellence in Plant Energy Biology, School of Agriculture Food and Wine, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert E Sharwood

    Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia
    For correspondence
    robert.sharwood@anu.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4993-3816
  12. Suzanne von Caemmerer

    Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (Centre of Excellence for Translational Photosynthesis,CE140100015)

  • Maria Ermakova
  • Hannah Osborn
  • Michael Groszmann
  • Soumi Bala
  • Hugo Alonso-cantabrana
  • Robert T Furbank
  • Robert E Sharwood
  • Suzanne von Caemmerer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ermakova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,610
    views
  • 321
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.70095

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Plant Biology
    Maryam Rahmati Ishka, Hayley Sussman ... Magdalena M Julkowska
    Research Article

    Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study’s innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.