The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging

  1. Casey Paquola  Is a corresponding author
  2. Jessica Royer
  3. Lindsay B Lewis
  4. Claude Lepage
  5. Tristan Glatard
  6. Konrad Wagstyl
  7. Jordan DeKraker
  8. Paule-Joanne Toussaint
  9. Sofie Louise Valk
  10. D Louis Collins
  11. Ali Khan
  12. Katrin Amunts
  13. Alan C Evans
  14. Timo Dickscheid
  15. Boris C Bernhardt  Is a corresponding author
  1. McGill University, Canada
  2. Concordia University, Canada
  3. UCL, United Kingdom
  4. University of Western Ontario, Canada
  5. Max Planck Institute Leipzig, Germany
  6. Montreal Neurological Institute and Hospital, Canada
  7. Heinrich Heine University, Germany
  8. Forschungszentrum Jülich, Germany

Abstract

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

Data availability

All data generated or analysed during this study are included in the BigBrainWarp repository (https://github.com/caseypaquola/BigBrainWarp).

The following previously published data sets were used

Article and author information

Author details

  1. Casey Paquola

    Neurology and Neurosurgery, McGill University, Montréal, Canada
    For correspondence
    casey.paquola@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-4103
  2. Jessica Royer

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindsay B Lewis

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Claude Lepage

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Tristan Glatard

    Concordia University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Konrad Wagstyl

    Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jordan DeKraker

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Paule-Joanne Toussaint

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7446-150X
  9. Sofie Louise Valk

    Cognitive Neurogenetics, Max Planck Institute Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849
  10. D Louis Collins

    McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal Neurological Institute and Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8432-7021
  11. Ali Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Katrin Amunts

    Heinrich Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5828-0867
  13. Alan C Evans

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Timo Dickscheid

    Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Boris C Bernhardt

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    boris.bernhardt@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9256-6041

Funding

Helmholtz Association

  • Casey Paquola
  • Lindsay B Lewis
  • Claude Lepage
  • Jordan DeKraker
  • Paule-Joanne Toussaint
  • Sofie Louise Valk
  • D Louis Collins
  • Katrin Amunts
  • Alan C Evans
  • Timo Dickscheid
  • Boris C Bernhardt

Fonds de Recherche du Québec - Santé

  • Casey Paquola
  • Boris C Bernhardt

National Science and Engineering Research Council of Canada

  • Ali Khan
  • Boris C Bernhardt

Canadian Institutes of Health Research

  • Jessica Royer
  • Ali Khan
  • Boris C Bernhardt

SickKids Foundation

  • Boris C Bernhardt

Azrieli Center for Autism Research

  • Boris C Bernhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Paquola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,971
    views
  • 402
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casey Paquola
  2. Jessica Royer
  3. Lindsay B Lewis
  4. Claude Lepage
  5. Tristan Glatard
  6. Konrad Wagstyl
  7. Jordan DeKraker
  8. Paule-Joanne Toussaint
  9. Sofie Louise Valk
  10. D Louis Collins
  11. Ali Khan
  12. Katrin Amunts
  13. Alan C Evans
  14. Timo Dickscheid
  15. Boris C Bernhardt
(2021)
The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging
eLife 10:e70119.
https://doi.org/10.7554/eLife.70119

Share this article

https://doi.org/10.7554/eLife.70119

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.