The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging

  1. Casey Paquola  Is a corresponding author
  2. Jessica Royer
  3. Lindsay B Lewis
  4. Claude Lepage
  5. Tristan Glatard
  6. Konrad Wagstyl
  7. Jordan DeKraker
  8. Paule-Joanne Toussaint
  9. Sofie Louise Valk
  10. D Louis Collins
  11. Ali Khan
  12. Katrin Amunts
  13. Alan C Evans
  14. Timo Dickscheid
  15. Boris C Bernhardt  Is a corresponding author
  1. McGill University, Canada
  2. Concordia University, Canada
  3. UCL, United Kingdom
  4. University of Western Ontario, Canada
  5. Max Planck Institute Leipzig, Germany
  6. Montreal Neurological Institute and Hospital, Canada
  7. Heinrich Heine University, Germany
  8. Forschungszentrum Jülich, Germany

Abstract

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

Data availability

All data generated or analysed during this study are included in the BigBrainWarp repository (https://github.com/caseypaquola/BigBrainWarp).

The following previously published data sets were used

Article and author information

Author details

  1. Casey Paquola

    Neurology and Neurosurgery, McGill University, Montréal, Canada
    For correspondence
    casey.paquola@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-4103
  2. Jessica Royer

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindsay B Lewis

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Claude Lepage

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Tristan Glatard

    Concordia University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Konrad Wagstyl

    Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jordan DeKraker

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Paule-Joanne Toussaint

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7446-150X
  9. Sofie Louise Valk

    Cognitive Neurogenetics, Max Planck Institute Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849
  10. D Louis Collins

    McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal Neurological Institute and Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8432-7021
  11. Ali Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Katrin Amunts

    Heinrich Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5828-0867
  13. Alan C Evans

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Timo Dickscheid

    Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Boris C Bernhardt

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    boris.bernhardt@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9256-6041

Funding

Helmholtz Association

  • Casey Paquola
  • Lindsay B Lewis
  • Claude Lepage
  • Jordan DeKraker
  • Paule-Joanne Toussaint
  • Sofie Louise Valk
  • D Louis Collins
  • Katrin Amunts
  • Alan C Evans
  • Timo Dickscheid
  • Boris C Bernhardt

Fonds de Recherche du Québec - Santé

  • Casey Paquola
  • Boris C Bernhardt

National Science and Engineering Research Council of Canada

  • Ali Khan
  • Boris C Bernhardt

Canadian Institutes of Health Research

  • Jessica Royer
  • Ali Khan
  • Boris C Bernhardt

SickKids Foundation

  • Boris C Bernhardt

Azrieli Center for Autism Research

  • Boris C Bernhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Saad Jbabdi, University of Oxford, United Kingdom

Version history

  1. Preprint posted: May 5, 2021 (view preprint)
  2. Received: May 6, 2021
  3. Accepted: August 23, 2021
  4. Accepted Manuscript published: August 25, 2021 (version 1)
  5. Version of Record published: September 16, 2021 (version 2)

Copyright

© 2021, Paquola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,516
    views
  • 356
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casey Paquola
  2. Jessica Royer
  3. Lindsay B Lewis
  4. Claude Lepage
  5. Tristan Glatard
  6. Konrad Wagstyl
  7. Jordan DeKraker
  8. Paule-Joanne Toussaint
  9. Sofie Louise Valk
  10. D Louis Collins
  11. Ali Khan
  12. Katrin Amunts
  13. Alan C Evans
  14. Timo Dickscheid
  15. Boris C Bernhardt
(2021)
The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging
eLife 10:e70119.
https://doi.org/10.7554/eLife.70119

Share this article

https://doi.org/10.7554/eLife.70119

Further reading

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan D Barense
    Research Article Updated

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations – the crossmodal binding problem – remains poorly understood. Here, we applied multi-echo fMRI across a 4-day paradigm, in which participants learned three-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures – temporal pole and perirhinal cortex – differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased toward visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Pascal Forcella, Niklas Ifflander ... Verdon Taylor
    Research Article

    Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here we addressed how murine adult hippocampal NSC fate is regulated and describe how Scaffold Attachment Factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor Nuclear Factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.