The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging

  1. Casey Paquola  Is a corresponding author
  2. Jessica Royer
  3. Lindsay B Lewis
  4. Claude Lepage
  5. Tristan Glatard
  6. Konrad Wagstyl
  7. Jordan DeKraker
  8. Paule-Joanne Toussaint
  9. Sofie Louise Valk
  10. D Louis Collins
  11. Ali Khan
  12. Katrin Amunts
  13. Alan C Evans
  14. Timo Dickscheid
  15. Boris C Bernhardt  Is a corresponding author
  1. McGill University, Canada
  2. Concordia University, Canada
  3. UCL, United Kingdom
  4. University of Western Ontario, Canada
  5. Max Planck Institute Leipzig, Germany
  6. Montreal Neurological Institute and Hospital, Canada
  7. Heinrich Heine University, Germany
  8. Forschungszentrum Jülich, Germany

Abstract

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

Data availability

All data generated or analysed during this study are included in the BigBrainWarp repository (https://github.com/caseypaquola/BigBrainWarp).

The following previously published data sets were used

Article and author information

Author details

  1. Casey Paquola

    Neurology and Neurosurgery, McGill University, Montréal, Canada
    For correspondence
    casey.paquola@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-4103
  2. Jessica Royer

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindsay B Lewis

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Claude Lepage

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Tristan Glatard

    Concordia University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Konrad Wagstyl

    Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jordan DeKraker

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Paule-Joanne Toussaint

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7446-150X
  9. Sofie Louise Valk

    Cognitive Neurogenetics, Max Planck Institute Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849
  10. D Louis Collins

    McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal Neurological Institute and Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8432-7021
  11. Ali Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Katrin Amunts

    Heinrich Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5828-0867
  13. Alan C Evans

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Timo Dickscheid

    Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Boris C Bernhardt

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    boris.bernhardt@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9256-6041

Funding

Helmholtz Association

  • Casey Paquola
  • Lindsay B Lewis
  • Claude Lepage
  • Jordan DeKraker
  • Paule-Joanne Toussaint
  • Sofie Louise Valk
  • D Louis Collins
  • Katrin Amunts
  • Alan C Evans
  • Timo Dickscheid
  • Boris C Bernhardt

Fonds de Recherche du Québec - Santé

  • Casey Paquola
  • Boris C Bernhardt

National Science and Engineering Research Council of Canada

  • Ali Khan
  • Boris C Bernhardt

Canadian Institutes of Health Research

  • Jessica Royer
  • Ali Khan
  • Boris C Bernhardt

SickKids Foundation

  • Boris C Bernhardt

Azrieli Center for Autism Research

  • Boris C Bernhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Paquola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.70119

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.