The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging

  1. Casey Paquola  Is a corresponding author
  2. Jessica Royer
  3. Lindsay B Lewis
  4. Claude Lepage
  5. Tristan Glatard
  6. Konrad Wagstyl
  7. Jordan DeKraker
  8. Paule-Joanne Toussaint
  9. Sofie Louise Valk
  10. D Louis Collins
  11. Ali Khan
  12. Katrin Amunts
  13. Alan C Evans
  14. Timo Dickscheid
  15. Boris C Bernhardt  Is a corresponding author
  1. McGill University, Canada
  2. Concordia University, Canada
  3. UCL, United Kingdom
  4. University of Western Ontario, Canada
  5. Max Planck Institute Leipzig, Germany
  6. Montreal Neurological Institute and Hospital, Canada
  7. Heinrich Heine University, Germany
  8. Forschungszentrum Jülich, Germany

Abstract

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices. This is accomplished with a simple wrapper function that allows users to easily map data between BigBrain and standard MRI spaces. The function automatically pulls specialised transformation procedures, based on ongoing research from a wide collaborative network of researchers. Additionally, the toolbox improves accessibility of histological information through dissemination of ready-to-use cytoarchitectural features. Finally, we demonstrate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to support multi-scale investigations of brain organisation.

Data availability

All data generated or analysed during this study are included in the BigBrainWarp repository (https://github.com/caseypaquola/BigBrainWarp).

The following previously published data sets were used

Article and author information

Author details

  1. Casey Paquola

    Neurology and Neurosurgery, McGill University, Montréal, Canada
    For correspondence
    casey.paquola@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0190-4103
  2. Jessica Royer

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindsay B Lewis

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Claude Lepage

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Tristan Glatard

    Concordia University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Konrad Wagstyl

    Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jordan DeKraker

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Paule-Joanne Toussaint

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7446-150X
  9. Sofie Louise Valk

    Cognitive Neurogenetics, Max Planck Institute Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2998-6849
  10. D Louis Collins

    McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal Neurological Institute and Hospital, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8432-7021
  11. Ali Khan

    Brain and Mind Institute, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Katrin Amunts

    Heinrich Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5828-0867
  13. Alan C Evans

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Timo Dickscheid

    Forschungszentrum Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Boris C Bernhardt

    Neurology and Neurosurgery, McGill University, Montreal, Canada
    For correspondence
    boris.bernhardt@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9256-6041

Funding

Helmholtz Association

  • Casey Paquola
  • Lindsay B Lewis
  • Claude Lepage
  • Jordan DeKraker
  • Paule-Joanne Toussaint
  • Sofie Louise Valk
  • D Louis Collins
  • Katrin Amunts
  • Alan C Evans
  • Timo Dickscheid
  • Boris C Bernhardt

Fonds de Recherche du Québec - Santé

  • Casey Paquola
  • Boris C Bernhardt

National Science and Engineering Research Council of Canada

  • Ali Khan
  • Boris C Bernhardt

Canadian Institutes of Health Research

  • Jessica Royer
  • Ali Khan
  • Boris C Bernhardt

SickKids Foundation

  • Boris C Bernhardt

Azrieli Center for Autism Research

  • Boris C Bernhardt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Paquola et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,891
    views
  • 395
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Casey Paquola
  2. Jessica Royer
  3. Lindsay B Lewis
  4. Claude Lepage
  5. Tristan Glatard
  6. Konrad Wagstyl
  7. Jordan DeKraker
  8. Paule-Joanne Toussaint
  9. Sofie Louise Valk
  10. D Louis Collins
  11. Ali Khan
  12. Katrin Amunts
  13. Alan C Evans
  14. Timo Dickscheid
  15. Boris C Bernhardt
(2021)
The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging
eLife 10:e70119.
https://doi.org/10.7554/eLife.70119

Share this article

https://doi.org/10.7554/eLife.70119

Further reading

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.

    1. Neuroscience
    Hans Auer, Donna Gift Cabalo ... Jessica Royer
    Research Article

    The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in microstructure and function. The current study characterized subregional structure-function coupling in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the generalizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free conditions, and revealed a close association of structural axes with macroscale functional network embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel multiscale approach consolidates descriptions of amygdala anatomy and function obtained from histological and in vivo imaging techniques.