Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations

  1. Julia M Kreiner  Is a corresponding author
  2. George Sandler
  3. Aaron J Stern
  4. Patrick J Tranel
  5. Detlef Weigel
  6. John Stinchcombe
  7. Stephen Isaac Wright
  1. University of Toronto, Canada
  2. University of California, Berkeley, United States
  3. University of Illinois Urbana-Champaign, United States
  4. Max Planck Institute for Developmental Biology, Germany

Abstract

Causal mutations and their frequency in agricultural fields are well-characterized for herbicide resistance. However, we still lack understanding of their evolutionary history: the extent of parallelism in the origins of target-site resistance (TSR), how long these mutations persist, how quickly they spread, and allelic interactions that mediate their selective advantage. We addressed these questions with genomic data from 18 agricultural populations of common waterhemp (Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past century, with a contemporary effective population size (Ne) estimate of 8x107. We found variation at seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which were common. These three common resistance variants show parallelism in their mutational origins, with gene flow having shaped their distribution across the landscape. Allele age estimates supported a strong role of adaptation from de novo mutations, with a median allele age of 30 suggesting that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages varied in both their age and evidence for selection over two different timescales, implying considerable heterogeneity in the forces that govern their persistence. The evolutionary history of TSR has also been shaped by both intra- and inter-locus allelic interactions. We report a signal of extended haplotype competition between two common TSR alleles, and extreme linkage with genome-wide alleles with known functions in resistance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a metapopulation, with important implications for the management of herbicide resistance.

Data availability

Sequencing data used in this paper were previously deposited in ENA under project number PRJEB31711, and reference genome is available on CoGe (reference ID = 54057). Code used to generate results in this paper is available at https://github.com/jkreinz/TSRevolution.

The following previously published data sets were used

Article and author information

Author details

  1. Julia M Kreiner

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    For correspondence
    julia.kreiner@mail.utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8593-1394
  2. George Sandler

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Aaron J Stern

    Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Patrick J Tranel

    Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  5. Detlef Weigel

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    Detlef Weigel, Deputy editor of eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-7963
  6. John Stinchcombe

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3349-2964
  7. Stephen Isaac Wright

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.

Funding

Natural Sciences and Engineering Research Council of Canada (PGS-D)

  • Julia M Kreiner

Society for the Study of Evolution (Rosemary Grant Advanced Award)

  • Julia M Kreiner

Natural Sciences and Engineering Research Council of Canada (Discovery Grant)

  • John Stinchcombe
  • Stephen Isaac Wright

Canada Research Chairs (Population Genomics)

  • Stephen Isaac Wright

Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg

  • Detlef Weigel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philipp W Messer, Cornell University, United States

Version history

  1. Preprint posted: May 10, 2021 (view preprint)
  2. Received: May 11, 2021
  3. Accepted: January 16, 2022
  4. Accepted Manuscript published: January 17, 2022 (version 1)
  5. Version of Record published: January 28, 2022 (version 2)

Copyright

© 2022, Kreiner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,833
    views
  • 300
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia M Kreiner
  2. George Sandler
  3. Aaron J Stern
  4. Patrick J Tranel
  5. Detlef Weigel
  6. John Stinchcombe
  7. Stephen Isaac Wright
(2022)
Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations
eLife 11:e70242.
https://doi.org/10.7554/eLife.70242

Share this article

https://doi.org/10.7554/eLife.70242

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.