Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations

  1. Julia M Kreiner  Is a corresponding author
  2. George Sandler
  3. Aaron J Stern
  4. Patrick J Tranel
  5. Detlef Weigel
  6. John Stinchcombe
  7. Stephen Isaac Wright
  1. University of Toronto, Canada
  2. University of California, Berkeley, United States
  3. University of Illinois Urbana-Champaign, United States
  4. Max Planck Institute for Developmental Biology, Germany

Abstract

Causal mutations and their frequency in agricultural fields are well-characterized for herbicide resistance. However, we still lack understanding of their evolutionary history: the extent of parallelism in the origins of target-site resistance (TSR), how long these mutations persist, how quickly they spread, and allelic interactions that mediate their selective advantage. We addressed these questions with genomic data from 18 agricultural populations of common waterhemp (Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past century, with a contemporary effective population size (Ne) estimate of 8x107. We found variation at seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which were common. These three common resistance variants show parallelism in their mutational origins, with gene flow having shaped their distribution across the landscape. Allele age estimates supported a strong role of adaptation from de novo mutations, with a median allele age of 30 suggesting that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages varied in both their age and evidence for selection over two different timescales, implying considerable heterogeneity in the forces that govern their persistence. The evolutionary history of TSR has also been shaped by both intra- and inter-locus allelic interactions. We report a signal of extended haplotype competition between two common TSR alleles, and extreme linkage with genome-wide alleles with known functions in resistance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a metapopulation, with important implications for the management of herbicide resistance.

Data availability

Sequencing data used in this paper were previously deposited in ENA under project number PRJEB31711, and reference genome is available on CoGe (reference ID = 54057). Code used to generate results in this paper is available at https://github.com/jkreinz/TSRevolution.

The following previously published data sets were used

Article and author information

Author details

  1. Julia M Kreiner

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    For correspondence
    julia.kreiner@mail.utoronto.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8593-1394
  2. George Sandler

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Aaron J Stern

    Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Patrick J Tranel

    Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  5. Detlef Weigel

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    Detlef Weigel, Deputy editor of eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-7963
  6. John Stinchcombe

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3349-2964
  7. Stephen Isaac Wright

    Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.

Funding

Natural Sciences and Engineering Research Council of Canada (PGS-D)

  • Julia M Kreiner

Society for the Study of Evolution (Rosemary Grant Advanced Award)

  • Julia M Kreiner

Natural Sciences and Engineering Research Council of Canada (Discovery Grant)

  • John Stinchcombe
  • Stephen Isaac Wright

Canada Research Chairs (Population Genomics)

  • Stephen Isaac Wright

Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg

  • Detlef Weigel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kreiner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,974
    views
  • 320
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia M Kreiner
  2. George Sandler
  3. Aaron J Stern
  4. Patrick J Tranel
  5. Detlef Weigel
  6. John Stinchcombe
  7. Stephen Isaac Wright
(2022)
Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations
eLife 11:e70242.
https://doi.org/10.7554/eLife.70242

Share this article

https://doi.org/10.7554/eLife.70242

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.