Development and genetics of red coloration in the zebrafish relative Danio albolineatus

  1. Delai Huang
  2. Victor M Lewis
  3. Tarah N Foster
  4. Matthew B Toomey
  5. Joseph C Corbo
  6. David M Parichy  Is a corresponding author
  1. University of Virginia, United States
  2. University of Tulsa, United States
  3. Washington University School of Medicine, United States

Abstract

Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step towards defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.

Data availability

Numerical data presented in figure panels are provided in Supplementary File 1. RNA-Seq data has been deposited in GEO and is publicly available, accession #GSE174713)

The following data sets were generated

Article and author information

Author details

  1. Delai Huang

    University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Victor M Lewis

    University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tarah N Foster

    University of Tulsa, Tulsa, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew B Toomey

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9184-197X
  5. Joseph C Corbo

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9323-7140
  6. David M Parichy

    University of Virginia, Charlottesville, United States
    For correspondence
    dparichy@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2771-6095

Funding

National Institute of General Medical Sciences (R35 GM122471)

  • David M Parichy

University of Tulsa (start-up funds)

  • Matthew B Toomey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional Animal Care and Use Committee (ACUC) protocol (#4170) of the University of Virginia. Euthanasia was accomplished by overdose of MS222 followed by physical maceration.

Copyright

© 2021, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,678
    views
  • 362
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Delai Huang
  2. Victor M Lewis
  3. Tarah N Foster
  4. Matthew B Toomey
  5. Joseph C Corbo
  6. David M Parichy
(2021)
Development and genetics of red coloration in the zebrafish relative Danio albolineatus
eLife 10:e70253.
https://doi.org/10.7554/eLife.70253

Share this article

https://doi.org/10.7554/eLife.70253