Cortico-subcortical β burst dynamics underlying movement cancellation in humans
Abstract
Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.
Data availability
All data analyzed during this study and scripts used for analyses are available on Dryad.
-
Cortico-subcortical β burst dynamics underlying movement cancellation in humansDryad Digital Repository, doi:10.5061/dryad.gf1vhhmq0.
Article and author information
Author details
Funding
National Institutes of Health (T32GSMC08540)
- Darcy A Diesburg
National Institutes of Health (R01NS117753)
- Jan R Wessel
National Science Foundation (CAREER 1752355)
- Jan R Wessel
Carver College of Medicine & Iowa Neuroscience Institute (Research Program of Excellence Funding)
- Jeremy DW Greenlee
Carver College of Medicine & Iowa Neuroscience Institute (Research Program of Excellence Funding)
- Jan R Wessel
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Research participants signed a written informed consent document during a clinic visit prior to surgery. Experimental protocols were approved by the University of Iowa's Institutional Review Board (#201402720).
Reviewing Editor
- Nicole C Swann, University of Oregon, United States
Publication history
- Received: May 11, 2021
- Accepted: December 6, 2021
- Accepted Manuscript published: December 7, 2021 (version 1)
- Version of Record published: December 21, 2021 (version 2)
Copyright
© 2021, Diesburg et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 699
- Page views
-
- 113
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Neuroscience
Resolving trajectories of axonal pathways in the primate prefrontal cortex remains crucial to gain insights into higher-order processes of cognition and emotion, which requires a comprehensive map of axonal projections linking demarcated subdivisions of prefrontal cortex and the rest of brain. Here, we report a mesoscale excitatory projectome issued from the ventrolateral prefrontal cortex (vlPFC) to the entire macaque brain by using viral-based genetic axonal tracing in tandem with high-throughput serial two-photon tomography, which demonstrated prominent monosynaptic projections to other prefrontal areas, temporal, limbic, and subcortical areas, relatively weak projections to parietal and insular regions but no projections directly to the occipital lobe. In a common 3D space, we quantitatively validated an atlas of diffusion tractography-derived vlPFC connections with correlative green fluorescent protein-labeled axonal tracing, and observed generally good agreement except a major difference in the posterior projections of inferior fronto-occipital fasciculus. These findings raise an intriguing question as to how neural information passes along long-range association fiber bundles in macaque brains, and call for the caution of using diffusion tractography to map the wiring diagram of brain circuits.
-
- Medicine
- Neuroscience
Background: Deep Brain Stimulation (DBS) electrode implant trajectories are stereotactically defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode recordings (MER) or local field potential recordings (LFP) can be used to extend neuroanatomical information (defined by magnetic resonance imaging) with neurophysiological activity patterns recorded from micro- and macroelectrodes probing the surgical target site. Currently, these two sources of information (imaging vs. electrophysiology) are analyzed separately, while means to fuse both data streams have not been introduced.
Methods: Here we present a tool that integrates resources from stereotactic planning, neuroimaging, MER and high-resolution atlas data to create a real-time visualization of the implant trajectory. We validate the tool based on a retrospective cohort of DBS patients (𝑁 = 52) offline and present single use cases of the real-time platform. Results: We establish an open-source software tool for multimodal data visualization and analysis during DBS surgery. We show a general correspondence between features derived from neuroimaging and electrophysiological recordings and present examples that demonstrate the functionality of the tool.
Conclusions: This novel software platform for multimodal data visualization and analysis bears translational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is extendable to integrate with additional software packages.
Funding: Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luftund Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), Foundation for OCD Research (FFOR).