Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy

  1. Miriam S Weber
  2. Matthias Eibauer
  3. Suganya Sivagurunathan
  4. Thomas M Magin
  5. Robert D Goldman
  6. Ohad Medalia  Is a corresponding author
  1. University of Zürich, Switzerland
  2. Northwestern University Feinberg School of Medicine, United States
  3. University of Leipzig, Germany

Abstract

Keratin intermediate filaments are an essential and major component of the cytoskeleton in epithelial cells. They form a stable yet dynamic filamentous network extending from the nucleus to the cell periphery, which provides resistance to mechanical stresses. Mutations in keratin genes are related to a variety of epithelial tissue diseases. Despite their importance, the molecular structure of keratin filaments remains largely unknown. In this study, we analyzed the structure of keratin 5/keratin 14 filaments within ghost mouse keratinocytes by cryo-electron microscopy and cryo-electron tomography. By averaging a large number of keratin segments, we have gained insights into the helical architecture of the filaments. Two-dimensional classification revealed profound variations in the diameter of keratin filaments and their subunit organization. Computational reconstitution of filaments of substantial length uncovered a high degree of internal heterogeneity along single filaments, which can contain regions of helical symmetry, regions with less symmetry and regions with significant diameter fluctuations. Cross section views of filaments revealed that keratins form hollow cylinders consisting of multiple protofilaments, with an electron dense core located in the center of the filament. These findings shed light on the complex and remarkable heterogenic architecture of keratin filaments, suggesting that they are highly flexible, dynamic cytoskeletal structures.

Data availability

Representative cryo-ET data have been deposited in the Electron Microscopy Data Bank under accession codes EMD-12958 and EMD-12959. In addition, data was uploaded to https://doi.org/10.5061/dryad.gqnk98sn4.

The following data sets were generated

Article and author information

Author details

  1. Miriam S Weber

    University of Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthias Eibauer

    University of Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Suganya Sivagurunathan

    Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas M Magin

    Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert D Goldman

    Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ohad Medalia

    University of Zürich, Zurich, Switzerland
    For correspondence
    omedalia@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0994-2937

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_179418)

  • Ohad Medalia

NIH Office of the Director (5PO1 GM096971)

  • Robert D Goldman

NIH Office of the Director (RO1GM140108)

  • Robert D Goldman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew P Carter, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: May 12, 2021
  2. Preprint posted: May 14, 2021 (view preprint)
  3. Accepted: July 23, 2021
  4. Accepted Manuscript published: July 29, 2021 (version 1)
  5. Version of Record published: August 12, 2021 (version 2)

Copyright

© 2021, Weber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,790
    views
  • 255
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miriam S Weber
  2. Matthias Eibauer
  3. Suganya Sivagurunathan
  4. Thomas M Magin
  5. Robert D Goldman
  6. Ohad Medalia
(2021)
Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy
eLife 10:e70307.
https://doi.org/10.7554/eLife.70307

Share this article

https://doi.org/10.7554/eLife.70307

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.