Partial response electromyography as a marker of action stopping
Abstract
Response inhibition is among the core constructs of cognitive control. It is notoriously difficult to quantify from overt behavior, since the outcome of successful inhibition is the lack of a behavioral response. Currently, the most common measure of action stopping, and by proxy response inhibition, is the model-based stop signal reaction time (SSRT) derived from the stop signal task. Recently, partial response electromyography (prEMG) has been introduced as a complementary physiological measure to capture individual stopping latencies. PrEMG refers to muscle activity initiated by the go signal that plummets after the stop signal before its accumulation to a full response. Whereas neither the SSRT nor the prEMG is an unambiguous marker for neural processes underlying response inhibition, our analysis indicates that the prEMG peak latency is better suited to investigate brain mechanisms of action stopping. This study is a methodological resource with a comprehensive overview of the psychometric properties of the prEMG in a stop signal task, and further provides practical tips for data collection and analysis.
Data availability
All data and analyses scripts are deposited in the Open Science Framework (Raud L, Thunberg C, Huster R. 2021. Partial response electromyography as a marker of action stopping. Data and analyses scripts. doi:10.17605/OSF.IO/RQNUJ).
-
Partial response electromyography as a marker of action stopping. Data and analyses scripts.Open Science Framework 10.17605/OSF.IO/RQNUJ.
Article and author information
Author details
Funding
The authors declare that there was no specific funding associated with this work.
Ethics
Human subjects: Participants gave written informed consent prior to data collection, and everyone received monetary compensation for their participation. The study was conducted in accordance with the Helsinki declaration, and was approved by the internal review board of the University of Oslo (ref. 1105078).
Copyright
© 2022, Raud et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,050
- views
-
- 190
- downloads
-
- 35
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
In albino mice and EphB1 knockout mice, mistargeted retinal ganglion cell axons form dense islands of axon terminals in the dorsal lateral geniculate nuclei (dLGN). The formation of these islands of retinal input depends on developmental patterns of spontaneous retinal activity. We reconstructed the microcircuitry of the activity-dependent islands and found that the boundaries of the island represent a remarkably strong segregation within retinogeniculate connectivity. We conclude that when sets of retinal input are established in the wrong part of the dLGN, the developing circuitry responds by forming a synaptically isolated subcircuit within the otherwise fully connected network. The fact that there is a developmental starting condition that can induce a synaptically segregated microcircuit has important implications for our understanding of the organization of visual circuits and our understanding of the implementation of activity-dependent development.
-
- Neuroscience
Neural activity in auditory cortex tracks the amplitude-onset envelope of continuous speech, but recent work counterintuitively suggests that neural tracking increases when speech is masked by background noise, despite reduced speech intelligibility. Noise-related amplification could indicate that stochastic resonance – the response facilitation through noise – supports neural speech tracking, but a comprehensive account is lacking. In five human electroencephalography experiments, the current study demonstrates a generalized enhancement of neural speech tracking due to minimal background noise. Results show that (1) neural speech tracking is enhanced for speech masked by background noise at very high signal-to-noise ratios (~30 dB SNR) where speech is highly intelligible; (2) this enhancement is independent of attention; (3) it generalizes across different stationary background maskers, but is strongest for 12-talker babble; and (4) it is present for headphone and free-field listening, suggesting that the neural-tracking enhancement generalizes to real-life listening. The work paints a clear picture that minimal background noise enhances the neural representation of the speech onset-envelope, suggesting that stochastic resonance contributes to neural speech tracking. The work further highlights non-linearities of neural tracking induced by background noise that make its use as a biological marker for speech processing challenging.