iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling

  1. Dongsheng Guo
  2. Katelyn Daman
  3. Jennifer JC Chen
  4. Meng-Jiao Shi
  5. Jing Yan
  6. Zdenka Matijasevic
  7. Amanda M Rickard
  8. Monica H Bennett
  9. Alex Kiselyov
  10. Haowen Zhou
  11. Anne G Bang
  12. Kathryn R Wagner
  13. René Maehr
  14. Oliver D King
  15. Lawrence J Hayward
  16. Charles P Emerson Jr  Is a corresponding author
  1. Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, United States
  2. Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, United States
  3. Transgenic Animal Modeling Core, University of Massachusetts Chan Medical School, United States
  4. Genea Biocells, United States
  5. Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, United States
  6. Center for Genetic Muscle Disorders, Kennedy Krieger Institute, United States
  7. Program in Molecular Medicine, University of Massachusetts Chan Medical School, United States
10 figures, 1 table and 5 additional files

Figures

Figure 1 with 2 supplements
Isolation and characterization of iMyoblasts.

(A) Schematic of a three-stage transgene-free iPSC induction, iMyoblast reserve cell isolation, and iMyotube differentiation protocol. Images of S2 cells and iMyoblasts immunostained with MYOD1 …

Figure 1—figure supplement 1
Transgene-free myogenic induction of FSHD1 and Ctrl iPSC and ESC and FKRP LGMDR9 and LGMDR7 iPSCs.

(A) Three-stage transgene-free myogenic induction (Caron et al., 2016). (B) Normalized qPCR assays of PAX3, PAX7, MYOD1, and MYH8 RNAs during myogenic induction of FSHD1 (pink) and Ctrl (teal) ESCs, …

Figure 1—figure supplement 2
Reserve cell isolation of induced tertiary Myoblasts.

(A) Ctrl (17UM) and FSHD1 (17AM) tertiary iMyoblast cell lines isolated from iMyotube cultures using reserve cell selection and cultured for three passages in bMyoblast growth medium followed by …

Figure 2 with 1 supplement
iMyoblasts have a distinct gene expression signature compared to S1, S2, and muscle biopsy cells.

(A) Single-cell transcriptome sequencing (scRNA-Seq) was performed on S1, S2, iMyoblasts and bMyoblasts from three FSHD1 and three healthy (Ctrl) donors. A total of 24,991 cells satisfied criteria …

Figure 2—figure supplement 1
Morphology of different cell classes used in scRNA-Seq.

Phase images of S1, S2, iMyoblast (iMB), and bMyoblast (bMB) of cohort 17. Scale bar=100 µm.

scRNA-seq transcriptome signatures of iMyoblasts from FSHD1 and Ctrl subjects compared to S1, S2A, S2B, bMyo, and bMes myogenic cell classes.

Dot plot of manually curated genes in cells from six different subjects for each of the six cell classes (bottom row). Purple to orange colors define the low to high average expression of each gene …

Figure 4 with 2 supplements
iMyoblasts upregulated muscle genes during ex vivo differentiation in response to specialized differentiation media.

(A) Normalized qPCR assays of muscle RNAs CKM, MYH1, and MYH8 in cultures of bMyoblasts and iMyoblasts from FSHD1, Ctrl, and LGMDR7 iPSCs during their differentiation for 6 days (D) in N2 serum-free …

Figure 4—figure supplement 1
Effects of serum-free media and iPSC reprogramming on muscle and DUX4 target gene expression.

(A) Normalized qPCR assays of the expression of muscle and DUX4 target genes during the myotube differentiation of FSHD1 and Ctrl bMyoblasts and iMyoblasts at Days 0, 2, 4, and 6, comparing Opti-MEM …

Figure 4—figure supplement 2
iMyotubes and bMyotubes respond differently to specialized differentiation media.

Phase images of Ctrl and FSHD1 (A) iMyotubes and (B) bMyotubes after differentiation in designated specialized differentiation media cocktails described in text. Scale bar=250µm.

Figure 5 with 1 supplement
DUX4 and DUX4 target gene expression by iMyotubes, bMyotubes, and S3 iMyocytes in response to differentiation media.

(A) Normalized qPCR assays of DUX4 target genes MBD3L2, TRIM43, LEUTX, and ZSCAN4 in cultures of bMyoblasts and iMyoblasts of family cohorts 17 and 15 during differentiation for 6 days (D) in N2 …

Figure 5—figure supplement 1
Losmapimod treatment decreases DUX4 target gene expression in FSHD1 iMyotubes.

(A) Schematic of Losmapimod treatment protocols for Pre-drug administration at the initiation of iMyotube differentiation and Post-drug administration after 4 days of iMyotube differentiation in N2 …

Figure 6 with 2 supplements
Epigenetic regulation of DUX4 and MYOD1 during iPSC reprogramming and iMyocyte and iMyotube differentiation.

(A) Normalized qPCR assays of DUX4 target genes MBD3L2, ZSCAN4, and TRIM43 during myogenic induction of FSHD1 and Ctrl ESC or iPSC. (B) Bisulfite sequencing of the DUX4 4qA locus in bMyoblasts from …

Figure 6—figure supplement 1
DUX4 expression by FSHD1 and Ctrl iPSCs and iMyoblasts and bMyoblasts.

(A) Normalized qPCR assays of DUX4 RNA expressed by Ctrl (17UM) and FSHD (17AM) in proliferating iMyoblasts and iMyotubes after 7 days in serum-free Opti-MEM differentiation medium. (B) Normalized …

Figure 6—figure supplement 2
CpG methylation of the 4qA allele of FSHD1 and Ctrl ESCs.

Bisulfite sequencing of the DUX4 4qA alleles of Genea Biocells' three Ctrl and three FSHD1 ESCs. (A) Bisulfite sequencing showing CpG methylated (red) and unmethylated (blue) CpG sites in DNA …

Figure 7 with 1 supplement
In vivo differentiation of FSHD1 and Ctrl iMyoblasts in muscle xenografts.

(A) Schematic of muscle xenograft protocol. (B) Representative cryosections of 2 and 4 weeks Ctrl bMyoblasts (17Ubic) and Ctrl and FSHD1 iMyoblasts (17UM and 17AM) xenoengrafted TA muscles were …

Figure 7—figure supplement 1
bMyoblasts and iMyoblasts efficiently xenoengraft into irradiated and injured TA muscle of NSG mice.

Cryosections of TA muscles were xenoengrafted with Ctrl (17Ubic) and FSHD (17Abic) bMyo and Ctrl (17UM) and FSHD (17AM) iMyoblasts. Xenografted TAs recovered 2 weeks (top panel) or 4 weeks (bottom …

Embryonic/adult MYH isoform switching during maturation of iMyoblast and bMyoblast muscle xenografts.

NanoString digital assays of the expression of MYH isoforms in cultures of FSHD1 (17Abic) and Ctrl (17Ubic) bMyotubes and FSHD1 (17AM) and Ctrl (17UM) iMyotubes at Day 6 differentiation in Opti-MEM …

iMyoblast modeling LGMDR7 and FKRP dystroglycanopathies.

(A) Representative images from LGMDR7 muscle xenograft cryosections immunostained with human-specific antibodies (left) lamin A/C (red) and collagen VI (green) or (right) lamin A/C and spectrin β1 …

iMyoblasts have regenerative potential after secondary muscle injury.

(A) Representative images from 17UM and WWS muscle xenograft cryosections immunostained with PAX3 and stained with Hoechst. The percentage of PAX3+ nuclei is shown on the right. N=4, 17UM engrafted …

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus)NOD.Cg-PrkdcscidIL2rγtmiWjl/SzJJackson LabStock No: 005557
Cell line(Homo sapiens)15Abic biopsy myoblastHomma et al., 2012; Jones et al., 2012
Cell line(H. sapiens)15Vbic biopsy myoblastHomma et al., 2012; Jones et al., 2012
Cell line(H. sapiens)17Abic biopsy myoblastJones et al., 2012
Cell line(H. sapiens)17Ubic biopsy myoblastJones et al., 2012
Cell line(H. sapiens)30Abic biopsy myoblastJones et al., 2012
Cell line(H. sapiens)30Wbic biopsy myoblastUniversity of Massachusetts Medical School https://www.umassmed.edu/wellstone/
Cell line(H. sapiens)15AM iPSCsThis paper15AM iPSCs were reprogrammed from 15Abic biopsy CD56+ myoblast at UMMS
Cell line(H. sapiens)15VM iPSCsThis paper15VM iPSCs were reprogrammed from 15Vbic biopsy CD56+ myoblast at UMMS
Cell line(H. sapiens)17AM iPSCsThis paper17AM iPSCs were reprogrammed from 17Abic biopsy CD56+ myoblast at UMMS
Cell line(H. sapiens)17AF iPSCsThis paper17UM iPSCs were reprogrammed from 17Abic biopsy CD56- fibroblast at UMMS
Cell line(H. sapiens)17UM iPSCsThis paper17UM iPSCs were reprogrammed from 17Ubic biopsy CD56+ myoblast at UMMS
Cell line(H. sapiens)30AM iPSCsThis paper30AM iPSCs were reprogrammed from 30Abic biopsy CD56+ myoblast at UMMS
Cell line(H. sapiens)30WM iPSCsThis paper30WM iPSCs were reprogrammed from 30Wbic biopsy CD56+ myoblast at UMMS
Cell line(H. sapiens)54574/75 iPSCsThis paper54574/75 iPSCs were reprogrammed from skin fibroblast at UMMS
Cell line(H. sapiens)54585 iPSCsThis paper54585 iPSCs were reprogrammed from skin fibroblast at UMMS
Cell line(H. sapiens)LGMDR7 iPSCsFormerly LGMD2G (Iyer et al., 2019)
Cell line(H. sapiens)LGMDR9 FP iPSCsThis paperFP iPSCs were reprogrammed from skin fibroblast at Sanford Burnham Prebys Medical Discovery Institute
Cell line(H. sapiens)WWS iPSCsThis paperWWS iPSCs were reprogrammed from skin fibroblast at Sanford Burnham Prebys Medical Discovery Institute
Cell line(H. sapiens)15AM iMyoblastsThis paper15AM iMyoblasts were made from 15AM iPSCs
Cell line(H. sapiens)15VM iMyoblastsThis paper15VM iMyoblasts were made from 15VM iPSCs
Cell line(H. sapiens)17AM iMyoblastsThis paper17AM iMyoblasts were made from 17AM iPSCs
Cell line(H. sapiens)17AF iMyoblastsThis paper17AF iMyoblasts were made from 17AF iPSCs
Cell line(H. sapiens)17UM iMyoblastsThis paper17UM iMyoblasts were made from 17UM iPSCs
Cell line(H. sapiens)30AM iMyoblastsThis paper30AM iMyoblasts were made from 30AM iPSCs
Cell line(H. sapiens)30WM iMyoblastsThis paper30WM iMyoblasts were made from 30WM iPSCs
Cell line(H. sapiens)54574/75 iMyoblastsThis paper54574/75 iMyoblasts were made from 30WM iPSCs
Cell line(H. sapiens)54585 iMyoblastsThis paper54585 iMyoblasts were made from 54585 iPSCs
Cell line(H. sapiens)LGMDR7 iMyoblastsThis paperLGMDR7 iMyoblasts were made from LGMDR7 iPSCs
Cell line(H. sapiens)LGMDR9 FP iMyoblastThis paperLGMDR9 FP iMyoblasts were made from LGMDR9 iPSCs
Cell line(H. sapiens)WWS iMyoblastsThis paperWWS iMyoblasts were made from WWS iPSCs
AntibodyMyoD1 (Clone: 5.8A) (Mouse Monoclonal)DakoCat #: M3512IF (1:50)
AntibodyMF20 (Mouse Monoclonal)DSHBCat #: AB_2147781IF (1:100)
AntibodyMEF2C (Rabbit polyclonal)Sigma-AldrichCat #: HPA005533IF (1:100)
AntibodyCollagen Type VI (Mouse Monoclonal)Sigma-AldrichCat #: MAB1944IF (1:250)
AntibodyLamin A/C (Mouse Monoclonal)Thermo Fisher ScientificCat #: MA3-1000IF (1:100)
AntibodyLaminin β1 (clone 4E10)MilliporeSigmaCat #: MAB1921PIF (1:100)
AntibodyMyosin heavy chain, neonatalLeica BiosystemsCat #: NCL-MHCnIF (1:100)
AntibodyPAX3AbcamCat #: Ab180754IF (1:50)
AntibodySpectrin β1 (Mouse Monoclonal)Leica BiosystemsCat #: NCL-SPEC1IF (1:50)
AntibodyAPC Mouse Anti-Human CD56 (Mouse Monoclonal)BD BiosciencesCat #: 555518Flow (100 μl per million cells)
AntibodyPE anti-human CD82 (Mouse Monoclonal)BioLegendCat #: 342103Flow (3 μl per million cells)
AntibodyFITC anti-human CD318 (Mouse Monoclonal)BioLegendCat #: 324004Flow (5 μl per million cells)
AntibodyAPC anti-human ERBB3 (Mouse Monoclonal)BioLegendCat #: 324708Flow (5 μl per million cells)
AntibodyFITC anti-human NGFR (Mouse Monoclonal)BioLegendCat #: 345104Flow (5 μl per million cells)
AntibodyPE anti-human CD18 (Mouse Monoclonal)BioLegendCat #: 373407Flow (5 μl per million cells)
Sequence-based reagentRT-qPCR primersThis paperSupplementary file 4
Commercial assay or kitStemMACS iPS-Brew XF, humanMiltenyi BiotecCat #: 130-104-368
Commercial assay or kitSkeletal Muscle Differentiation KitAmsbioAmsbio Skeletal Muscle Differentiation KitSKM01, SKM02, and SKM03 were used for human iPSCs skeletal muscle differentiation
Commercial assay or kitRNeasy Plus Mini KitQIAGENCat #: 74136
Commercial assay or kitMouse on Mouse (M.O.M.) Basic KitVectorlabCat #: BMK-2202
Commercial assay or kitSuperScript III First-Strand Synthesis SystemInvitrogenCat #: 18080051
Commercial assay or kitEmerson lab custom muscle NanoString panelNanoString TechnologiesNanoString Technologies developed the muscle NanoString panel based a gene list provided by Emerson lab
Commercial assay or kitChromium Single Cell 3' GEM, Library &Gel Bead Kit v2, 4 rxns10× GenomicsCat #: 120267
Commercial assay or kitChromium Chip A Single Cell Kit, 16 rxns10× GenomicsCat #: 1000009
Commercial assay or kitChromium i7 Multiplex Kit, 96 rxns10× GenomicsCat #: 120262
Chemical compound, drugROCK Inhibitor Y-27632STEMCELL TechnologiesCat #: 72307
Chemical compound, drugSB431542SelleckChemCat #: S1067
Chemical compound, drugCHIR99021STEMCELL TechnologiesCat #: 72052
Chemical compound, drugPrednisoloneSigma-AldrichCat #: P6004
Chemical compound, drugDAPTSelleckChemCat #: S2215
Chemical compound, drugDexamethasoneSelleckChemCat #: S1322
Chemical compound, drugForskolinSelleckChemCat #: S2449
Software, algorithmGraphPad PrismGraphPad Prism, RRID:SCR_002798https://www.graphpad.com/
Software, algorithmnSolver 4.0 Analysis SoftwarenSolver Analysis Software, RRID:SCR_003420http://www.nanostring.com/products/nSolver
Software, algorithmBisulfite Sequencing DNA Methylation AnalysisBISMA, RRID:SCR_000688http://services.ibc.uni-stuttgart.de/BDPC/BISMA/
Software, algorithmCell RangerCell Ranger, RRID:SCR_017344https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-rangerVersion 3.1.0
Software, algorithmSTAR 2.5.1bImplemented in Cell Ranger version 3.1.0https://github.com/alexdobin/STAR (Dobin, 2022)Version 2.5.1b
Software, algorithmPythonPython Programming Language, RRID:SCR_008394http://www.python.org/Version 2.7.9
Software, algorithmOpossum 0.2Oikkonen and Lise, 2017https://github.com/BSGOxford/Opossum (BSG Oxford, 2022)Version 0.2
Software, algorithmPlatypusPlatypus, RRID:SCR_005389https://www.rdm.ox.ac.uk/research/lunter-group/lunter-group/all-platypus-and-stampy-versionsVersion 0.8.1
Software, algorithmDemuxletKang et al., 2018https://github.com/statgen/demuxlet (The Center for Statistical Genetics at the University of Michigan School of Public Health, 2021)Version 08/03/2018
Software, algorithmSeuratSEURAT, RRID:SCR_007322http://seurat.r-forge.r-project.org/Version 3.1.4
Software, algorithmR Project for Statistical ComputingR Project for Statistical Computing, RRID:SCR_001905http://www.r-project.org/Version 3.6.2
Software, algorithmedgeRedgeR, RRID:SCR_012802http://bioconductor.org/packages/edgeR/Version 3.30.3

Additional files

Supplementary file 1

Differential expression for pairwise cell type comparisons from edgeR analysis.

For each of the 15 pairwise comparisons (shown in separate tabs), genes with differential expression (in either up or down directions) were ranked by p-value if the P-value < 1.0E-06 and |log2(FC)| > 1. The table includes columns for p-values, log2(FC), log2(CPM), QL F-test (F), and false discovery rate (FDR) from edgeR, and several columns for gene annotations.

https://cdn.elifesciences.org/articles/70341/elife-70341-supp1-v1.xlsb
Supplementary file 2

Top 20 Up and Down GO terms (BP, CC, MF) and KEGG pathways for pairwise cell type comparisons.

For each of the 15 pairwise comparisons (shown in separate tabs), the goana and kegga functions in edgeR were used to rank the top 20 Gene Ontology (GO) terms from each of the biological process (BP), cellular component (CC) and molecular function (MF) branches of GO, and the top 20 KEGG pathways, based on overrepresentation among the DE genes. Terms comprising N ( < 500) genes are sorted by P.Up and P.Down. For each term, the top DE Genes.Up and Genes.Down (ordered by P Value) are listed, up to a maximum of 30 genes.

https://cdn.elifesciences.org/articles/70341/elife-70341-supp2-v1.xlsx
Supplementary file 3

Pseudobulk counts for 36 samples based on scRNA-Seq data.

Raw single-cell counts were summed for each of the 6 cell types or subclusters of interest (S1, S2A, S2B, iMyoblast, bMyo, bMes) in each of the six donors (15 A, 15 V, 17 A, 17 U, 30 A, 30 W).

https://cdn.elifesciences.org/articles/70341/elife-70341-supp3-v1.xlsx
Supplementary file 4

Primer sequences.

Table lists all primers for qPCR and bisulfite sequencing.

https://cdn.elifesciences.org/articles/70341/elife-70341-supp4-v1.xlsx
Transparent reporting form
https://cdn.elifesciences.org/articles/70341/elife-70341-transrepform1-v1.pdf

Download links