The East Asian gut microbiome is distinct from colocalized white subjects and connected to metabolic health

  1. Qi Yan Ang
  2. Diana L Alba
  3. Vaibhav Upadhyay
  4. Jordan E Bisanz
  5. Jingwei Cai
  6. Ho Lim Lee
  7. Eliseo Barajas
  8. Grace Wei
  9. Cecilia Noecker
  10. Andrew D Patterson
  11. Suneil K Koliwad  Is a corresponding author
  12. Peter J Turnbaugh  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Pennsylvania State University, United States

Abstract

East Asians experience worse metabolic health outcomes compared to other ethnic groups at lower body mass indices; however, the potential role of the gut microbiota in contributing to these health disparities remains unknown. We conducted a multi-omic study of 46 lean and obese East Asian and White participants living in the San Francisco Bay Area, revealing marked differences between ethnic groups in bacterial richness and community structure. White individuals were enriched for the mucin-degrading Akkermansia muciniphila. East Asian subjects had increased levels of multiple bacterial phyla, fermentative pathways detected by metagenomics, and the short-chain fatty acid end-products acetate, propionate, and isobutyrate. Differences in the gut microbiota between the East Asian and White subjects could not be explained by dietary intake, were more pronounced in lean individuals, and were associated with current geographical location. Microbiome transplantations into germ-free mice demonstrated stable diet- and host genotype-independent differences between the gut microbiotas of East Asian and White individuals that differentially impact host body composition. Taken together, our findings add to the growing body of literature describing variation between ethnicities and provide a starting point for defining the mechanisms through which the microbiome may shape disparate health outcomes in East Asians.

Data availability

All 16S-seq and metagenomic sequencing data generated in the preparation of this manuscript have been deposited in NCBI's Sequence Read Archive under accession number PRJNA665061. Metabolomics results and metadata are available within this manuscript (Tables S2, S4, S5, and S9). Code for our manuscript will be uploaded to GitHub (https://github.com/turnbaughlab/2021_IDEO).

The following data sets were generated

Article and author information

Author details

  1. Qi Yan Ang

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Diana L Alba

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Vaibhav Upadhyay

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Jordan E Bisanz

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8649-1706
  5. Jingwei Cai

    Pennsylvania State University, College Park, United States
    Competing interests
    No competing interests declared.
  6. Ho Lim Lee

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Eliseo Barajas

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Grace Wei

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Cecilia Noecker

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Andrew D Patterson

    Pennsylvania State University, College Park, United States
    Competing interests
    No competing interests declared.
  11. Suneil K Koliwad

    University of California, San Francisco, San Francisco, United States
    For correspondence
    Suneil.Koliwad@ucsf.edu
    Competing interests
    No competing interests declared.
  12. Peter J Turnbaugh

    University of California, San Francisco, San Francisco, United States
    For correspondence
    Peter.Turnbaugh@ucsf.edu
    Competing interests
    Peter J Turnbaugh, is on the scientific advisory board for Kaleido, Pendulum, Seres, and SNIPRbiome; there is no direct overlap between the current study and these consulting duties.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0888-2875

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK114034)

  • Peter J Turnbaugh

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK11230401)

  • Suneil K Koliwad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J MacPherson, University of Bern, Switzerland

Ethics

Animal experimentation: Protocols for all experiments involving mice were approved by the University of California, San Francisco Institutional Animal Care and Use Committee, and performed accordingly (UCSF IACUC numbers AN183950 and AN184143).

Human subjects: Informed consent was provided for all subjects participating in the study, which was approved by the UCSF Institutional Review Board.

Version history

  1. Received: May 14, 2021
  2. Accepted: October 6, 2021
  3. Accepted Manuscript published: October 7, 2021 (version 1)
  4. Accepted Manuscript updated: October 8, 2021 (version 2)
  5. Version of Record published: November 24, 2021 (version 3)

Copyright

© 2021, Ang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,694
    views
  • 430
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qi Yan Ang
  2. Diana L Alba
  3. Vaibhav Upadhyay
  4. Jordan E Bisanz
  5. Jingwei Cai
  6. Ho Lim Lee
  7. Eliseo Barajas
  8. Grace Wei
  9. Cecilia Noecker
  10. Andrew D Patterson
  11. Suneil K Koliwad
  12. Peter J Turnbaugh
(2021)
The East Asian gut microbiome is distinct from colocalized white subjects and connected to metabolic health
eLife 10:e70349.
https://doi.org/10.7554/eLife.70349

Share this article

https://doi.org/10.7554/eLife.70349

Further reading

    1. Microbiology and Infectious Disease
    Swagata Bose, Satya Ranjan Sahu ... Narottam Acharya
    Research Article

    Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and β-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.

    1. Microbiology and Infectious Disease
    Tomoko Kubori, Kohei Arasaki ... Hiroki Nagai
    Research Article

    Rab GTPases are representative targets of manipulation by intracellular bacterial pathogens for hijacking membrane trafficking. Legionella pneumophila recruits many Rab GTPases to its vacuole and exploits their activities. Here, we found that infection-associated regulation of Rab10 dynamics involves ubiquitin signaling cascades mediated by the SidE and SidC families of Legionella ubiquitin ligases. Phosphoribosyl-ubiquitination of Rab10 catalyzed by the SidE ligases is crucial for its recruitment to the bacterial vacuole. SdcB, the previously uncharacterized SidC-family effector, resides on the vacuole and contributes to retention of Rab10 at the late stages of infection. We further identified MavC as a negative regulator of SdcB. By the transglutaminase activity, MavC crosslinks ubiquitin to SdcB and suppresses its function, resulting in elimination of Rab10 from the vacuole. These results demonstrate that the orchestrated actions of many L. pneumophila effectors fine-tune the dynamics of Rab10 during infection.