The East Asian gut microbiome is distinct from colocalized white subjects and connected to metabolic health

  1. Qi Yan Ang
  2. Diana L Alba
  3. Vaibhav Upadhyay
  4. Jordan E Bisanz
  5. Jingwei Cai
  6. Ho Lim Lee
  7. Eliseo Barajas
  8. Grace Wei
  9. Cecilia Noecker
  10. Andrew D Patterson
  11. Suneil K Koliwad  Is a corresponding author
  12. Peter J Turnbaugh  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Pennsylvania State University, United States

Abstract

East Asians experience worse metabolic health outcomes compared to other ethnic groups at lower body mass indices; however, the potential role of the gut microbiota in contributing to these health disparities remains unknown. We conducted a multi-omic study of 46 lean and obese East Asian and White participants living in the San Francisco Bay Area, revealing marked differences between ethnic groups in bacterial richness and community structure. White individuals were enriched for the mucin-degrading Akkermansia muciniphila. East Asian subjects had increased levels of multiple bacterial phyla, fermentative pathways detected by metagenomics, and the short-chain fatty acid end-products acetate, propionate, and isobutyrate. Differences in the gut microbiota between the East Asian and White subjects could not be explained by dietary intake, were more pronounced in lean individuals, and were associated with current geographical location. Microbiome transplantations into germ-free mice demonstrated stable diet- and host genotype-independent differences between the gut microbiotas of East Asian and White individuals that differentially impact host body composition. Taken together, our findings add to the growing body of literature describing variation between ethnicities and provide a starting point for defining the mechanisms through which the microbiome may shape disparate health outcomes in East Asians.

Data availability

All 16S-seq and metagenomic sequencing data generated in the preparation of this manuscript have been deposited in NCBI's Sequence Read Archive under accession number PRJNA665061. Metabolomics results and metadata are available within this manuscript (Tables S2, S4, S5, and S9). Code for our manuscript will be uploaded to GitHub (https://github.com/turnbaughlab/2021_IDEO).

The following data sets were generated

Article and author information

Author details

  1. Qi Yan Ang

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Diana L Alba

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Vaibhav Upadhyay

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Jordan E Bisanz

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8649-1706
  5. Jingwei Cai

    Pennsylvania State University, College Park, United States
    Competing interests
    No competing interests declared.
  6. Ho Lim Lee

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Eliseo Barajas

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Grace Wei

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Cecilia Noecker

    University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Andrew D Patterson

    Pennsylvania State University, College Park, United States
    Competing interests
    No competing interests declared.
  11. Suneil K Koliwad

    University of California, San Francisco, San Francisco, United States
    For correspondence
    Suneil.Koliwad@ucsf.edu
    Competing interests
    No competing interests declared.
  12. Peter J Turnbaugh

    University of California, San Francisco, San Francisco, United States
    For correspondence
    Peter.Turnbaugh@ucsf.edu
    Competing interests
    Peter J Turnbaugh, is on the scientific advisory board for Kaleido, Pendulum, Seres, and SNIPRbiome; there is no direct overlap between the current study and these consulting duties.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0888-2875

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK114034)

  • Peter J Turnbaugh

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK11230401)

  • Suneil K Koliwad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Protocols for all experiments involving mice were approved by the University of California, San Francisco Institutional Animal Care and Use Committee, and performed accordingly (UCSF IACUC numbers AN183950 and AN184143).

Human subjects: Informed consent was provided for all subjects participating in the study, which was approved by the UCSF Institutional Review Board.

Copyright

© 2021, Ang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,476
    views
  • 461
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qi Yan Ang
  2. Diana L Alba
  3. Vaibhav Upadhyay
  4. Jordan E Bisanz
  5. Jingwei Cai
  6. Ho Lim Lee
  7. Eliseo Barajas
  8. Grace Wei
  9. Cecilia Noecker
  10. Andrew D Patterson
  11. Suneil K Koliwad
  12. Peter J Turnbaugh
(2021)
The East Asian gut microbiome is distinct from colocalized white subjects and connected to metabolic health
eLife 10:e70349.
https://doi.org/10.7554/eLife.70349

Share this article

https://doi.org/10.7554/eLife.70349

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.