Structural basis for membrane recruitment of ATG16L1 by WIPI2 in Autophagy

  1. Lisa M Strong
  2. Chunmei Chang
  3. Julia F Riley
  4. C Alexander Boecker
  5. Thomas G Flower
  6. Cosmo Z Buffalo
  7. Xuefeng Ren
  8. Andrea KH Stavoe
  9. Erika LF Holzbaur
  10. James H Hurley  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Pennsylvania, United States
  3. The University of Texas Health Science Center at Houston McGovern Medical School, United States

Abstract

Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12-5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12-5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven bladed â-propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207-230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 â-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12-5-16L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12-5-16L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand, and ATG8 lipidation on the other.

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank under accession code PDB 7MU2. Protocols have been deposited in protocols.io. Plasmids developed for this study will be deposited at Addgene.org. GUV source data are being deposited in Zenodo.

The following data sets were generated

Article and author information

Author details

  1. Lisa M Strong

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Lisa M Strong, LMS is enrolled as a graduate student at UC Berkeley. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4293-8131
  2. Chunmei Chang

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Chunmei Chang, CC is employed at UC Berkeley. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5607-7985
  3. Julia F Riley

    University of Pennsylvania, Philadelphia,, United States
    Competing interests
    No competing interests declared.
  4. C Alexander Boecker

    University of Pennsylvania, Philadelphia,, United States
    Competing interests
    C Alexander Boecker, is employed at the University of Pennsylvania. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9701-5273
  5. Thomas G Flower

    Molecular Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Thomas G Flower, Thomas G. Flower was employed by UC Berkeley at the time he contributed to this study, and is currently employed at Galapagos, Romainville, France. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7890-6473
  6. Cosmo Z Buffalo

    Molecular Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Cosmo Z Buffalo, CZB is employed by UC Berkeley. The author has no competing interests to declare..
  7. Xuefeng Ren

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Xuefeng Ren, XR is employed by UC Berkeley. The author has no competing interests to declare..
  8. Andrea KH Stavoe

    The University of Texas Health Science Center at Houston McGovern Medical School, Houston, United States
    Competing interests
    Andrea KH Stavoe, is employed by The University of Texas Health Science Center at Houston McGovern Medical School. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4073-4565
  9. Erika LF Holzbaur

    Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Erika LF Holzbaur, ELFH is employed by the University of Pennsylvania. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5389-4114
  10. James H Hurley

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jimhurley@berkeley.edu
    Competing interests
    James H Hurley, JHH is employed by UC Berkeley. JHH has a competing interest as a co-founder of Casma Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5054-5445

Funding

Aligning Science Across Parkinson's (ASAP-000350)

  • Erika LF Holzbaur
  • James H Hurley

NIGMS (R01 GM111730)

  • James H Hurley

NINDS (R00 NS109286)

  • Andrea KH Stavoe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Strong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,419
    views
  • 555
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lisa M Strong
  2. Chunmei Chang
  3. Julia F Riley
  4. C Alexander Boecker
  5. Thomas G Flower
  6. Cosmo Z Buffalo
  7. Xuefeng Ren
  8. Andrea KH Stavoe
  9. Erika LF Holzbaur
  10. James H Hurley
(2021)
Structural basis for membrane recruitment of ATG16L1 by WIPI2 in Autophagy
eLife 10:e70372.
https://doi.org/10.7554/eLife.70372

Share this article

https://doi.org/10.7554/eLife.70372

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.