1. Cell Biology
Download icon

Structural basis for membrane recruitment of ATG16L1 by WIPI2 in Autophagy

  1. Lisa M Strong
  2. Chunmei Chang
  3. Julia F Riley
  4. C Alexander Boecker
  5. Thomas G Flower
  6. Cosmo Z Buffalo
  7. Xuefeng Ren
  8. Andrea KH Stavoe
  9. Erika LF Holzbaur
  10. James H Hurley  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Pennsylvania, United States
  3. The University of Texas Health Science Center at Houston McGovern Medical School, United States
Research Article
  • Cited 0
  • Views 1,059
  • Annotations
Cite this article as: eLife 2021;10:e70372 doi: 10.7554/eLife.70372

Abstract

Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12-5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12-5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven bladed â-propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207-230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 â-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12-5-16L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12-5-16L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand, and ATG8 lipidation on the other.

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank under accession code PDB 7MU2. Protocols have been deposited in protocols.io. Plasmids developed for this study will be deposited at Addgene.org. GUV source data are being deposited in Zenodo.

The following data sets were generated

Article and author information

Author details

  1. Lisa M Strong

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Lisa M Strong, LMS is enrolled as a graduate student at UC Berkeley. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4293-8131
  2. Chunmei Chang

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Chunmei Chang, CC is employed at UC Berkeley. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5607-7985
  3. Julia F Riley

    University of Pennsylvania, Philadelphia,, United States
    Competing interests
    No competing interests declared.
  4. C Alexander Boecker

    University of Pennsylvania, Philadelphia,, United States
    Competing interests
    C Alexander Boecker, is employed at the University of Pennsylvania. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9701-5273
  5. Thomas G Flower

    Molecular Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Thomas G Flower, Thomas G. Flower was employed by UC Berkeley at the time he contributed to this study, and is currently employed at Galapagos, Romainville, France. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7890-6473
  6. Cosmo Z Buffalo

    Molecular Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Cosmo Z Buffalo, CZB is employed by UC Berkeley. The author has no competing interests to declare..
  7. Xuefeng Ren

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Xuefeng Ren, XR is employed by UC Berkeley. The author has no competing interests to declare..
  8. Andrea KH Stavoe

    The University of Texas Health Science Center at Houston McGovern Medical School, Houston, United States
    Competing interests
    Andrea KH Stavoe, is employed by The University of Texas Health Science Center at Houston McGovern Medical School. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4073-4565
  9. Erika LF Holzbaur

    Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Erika LF Holzbaur, ELFH is employed by the University of Pennsylvania. The author has no competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5389-4114
  10. James H Hurley

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jimhurley@berkeley.edu
    Competing interests
    James H Hurley, JHH is employed by UC Berkeley. JHH has a competing interest as a co-founder of Casma Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5054-5445

Funding

Aligning Science Across Parkinson's (ASAP-000350)

  • Erika LF Holzbaur
  • James H Hurley

NIGMS (R01 GM111730)

  • James H Hurley

NINDS (R00 NS109286)

  • Andrea KH Stavoe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wade Harper, Harvard Medical School, United States

Publication history

  1. Preprint posted: May 14, 2021 (view preprint)
  2. Received: May 14, 2021
  3. Accepted: September 1, 2021
  4. Accepted Manuscript published: September 10, 2021 (version 1)
  5. Version of Record published: September 21, 2021 (version 2)

Copyright

© 2021, Strong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,059
    Page views
  • 244
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Shaun Abrams, Jeremy F Reiter
    Research Article

    Craniofacial defects are among the most common phenotypes caused by ciliopathies, yet the developmental and molecular etiology of these defects is poorly understood. We investigated multiple mouse models of human ciliopathies (including Tctn2, Cc2d2a and Tmem231 mutants) and discovered that each displays hypotelorism, a narrowing of the midface. As early in development as the end of gastrulation, Tctn2 mutants displayed reduced activation of the Hedgehog (HH) pathway in the prechordal plate, the head organizer. This prechordal plate defect preceded a reduction of HH pathway activation and Shh expression in the adjacent neurectoderm. Concomitant with the reduction of HH pathway activity, Tctn2 mutants exhibited increased cell death in the neurectoderm and facial ectoderm, culminating in a collapse of the facial midline. Enhancing HH signaling by decreasing the gene dosage of a negative regulator of the pathway, Ptch1, decreased cell death and rescued the midface defect in both Tctn2 and Cc2d2a mutants. These results reveal that ciliary HH signaling mediates communication between the prechordal plate and the neurectoderm to provide cellular survival cues essential for development of the facial midline.

    1. Cell Biology
    2. Developmental Biology
    Lianna W Wat et al.
    Research Article

    Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.