Single cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome

  1. Periklis Paganos
  2. Danila Voronov
  3. Jacob M Musser
  4. Detlev Arendt
  5. Maria Ina Arnone  Is a corresponding author
  1. Stazione Zoologica Anton Dohrn (SZN), Italy
  2. European Molecular Biology Laboratory, Germany
  3. Stazione Zoologica Anton Dohrn, Italy

Abstract

Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.

Data availability

Sequencing data (mapped reads) have been deposited in Dyrad under the unique identifier doi:10.5061/dryad.n5tb2rbvz

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Periklis Paganos

    Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9525-4625
  2. Danila Voronov

    Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2972-6484
  3. Jacob M Musser

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Detlev Arendt

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7833-050X
  5. Maria Ina Arnone

    Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
    For correspondence
    miarnone@szn.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9012-7624

Funding

H2020 Marie Skłodowska-Curie Actions (766053)

  • Periklis Paganos
  • Detlev Arendt
  • Maria Ina Arnone

H2020 European Research Council (788921)

  • Jacob M Musser
  • Detlev Arendt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Tessmar-Raible, University of Vienna, Austria

Version history

  1. Preprint posted: March 16, 2021 (view preprint)
  2. Received: May 17, 2021
  3. Accepted: November 24, 2021
  4. Accepted Manuscript published: November 25, 2021 (version 1)
  5. Version of Record published: December 17, 2021 (version 2)

Copyright

© 2021, Paganos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,717
    views
  • 371
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Periklis Paganos
  2. Danila Voronov
  3. Jacob M Musser
  4. Detlev Arendt
  5. Maria Ina Arnone
(2021)
Single cell RNA sequencing of the Strongylocentrotus purpuratus larva reveals the blueprint of major cell types and nervous system of a non-chordate deuterostome
eLife 10:e70416.
https://doi.org/10.7554/eLife.70416

Share this article

https://doi.org/10.7554/eLife.70416

Further reading

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.

    1. Developmental Biology
    2. Physics of Living Systems
    Raphaël Clément
    Insight

    Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.