A pre-screening strategy to assess resected tumor margins by imaging cytoplasmic viscosity and hypoxia

  1. Hui Huang
  2. Youpei Lin
  3. Wenrui Ma
  4. Jiannan Liu
  5. Jing Han
  6. Xiaoyi Hu
  7. Meilin Tang
  8. Shiqiang Yan
  9. Mieradilijiang Abudupataer
  10. Chenping Zhang
  11. Qiang Gao
  12. Weijia Zhang  Is a corresponding author
  1. Fudan University, China
  2. Zhongshan Hospital, Fudan University, China
  3. Shanghai Jiao Tong University School of Medicine, China

Abstract

To assure complete tumor removal, frozen section analysis is the most common procedure for intraoperative pathological assessment of resected tumor margins. However, during one operation, multiple biopsies may be sent for examination, but only few of them are made into cryosections because of the complex preparation protocols and time-consuming pathological analysis, which potentially increases the risk of overlooking tumor involvement. Here, we propose a fluorescence-based pre-screening strategy that allows high-throughput, convenient, and fast gross assessment of resected tumor margins. A dual-activatable cationic fluorescent molecular rotor was developed to specifically illuminate live tumor cells’ cytoplasm by emitting two different fluorescence signals in response to elevations in hypoxia-induced nitroreductase (a biochemical marker) and cytoplasmic viscosity (a biophysical marker), two characteristics of cancer cells. The ability of the fluorescent molecular rotor in detecting tumor cells was evaluated in mouse and human specimens of multiple tissues by comparing with hematoxylin and eosin staining. Importantly, the fluorescent molecular rotor achieved 100% specificity in discriminating lung and liver cancers from normal tissue, allowing pre-screening of the tumor-free surgical margins and promoting clinical decision. Altogether, this type of fluorescent molecular rotor and the proposed strategy may serve as a new option to facilitate intraoperative assessment of resected tumor margins.

Data availability

All data generated or analysed during this study are included in the manuscript and supplementary files. Source data files have been provided.

Article and author information

Author details

  1. Hui Huang

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Youpei Lin

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenrui Ma

    Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiannan Liu

    Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Han

    Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoyi Hu

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Meilin Tang

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shiqiang Yan

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Mieradilijiang Abudupataer

    Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5421-9820
  10. Chenping Zhang

    Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Qiang Gao

    Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Weijia Zhang

    Fudan University, Shanghai, China
    For correspondence
    weijiazhang@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6928-0416

Funding

National Key Research and Development Program of China (2018YFC1005002)

  • Weijia Zhang

National Natural Science Foundation of China (82070482,81772007,21734003,51927805)

  • Weijia Zhang

Shanghai Municipal Education Commission (2017-01-07-00-07-E00027)

  • Weijia Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal model procedures were conducted in accordance with the protocols approved by the Department of Laboratory Animal Science, Fudan University (202012023S).

Human subjects: Written informed consent and consent to publish were obtained from all patients before participation. All procedures were conducted in accordance with the protocols approved by the Ethics Committee of the Institutes of Biomedical Sciences, Fudan University (2020-014).

Copyright

© 2021, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 841
    views
  • 205
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hui Huang
  2. Youpei Lin
  3. Wenrui Ma
  4. Jiannan Liu
  5. Jing Han
  6. Xiaoyi Hu
  7. Meilin Tang
  8. Shiqiang Yan
  9. Mieradilijiang Abudupataer
  10. Chenping Zhang
  11. Qiang Gao
  12. Weijia Zhang
(2021)
A pre-screening strategy to assess resected tumor margins by imaging cytoplasmic viscosity and hypoxia
eLife 10:e70471.
https://doi.org/10.7554/eLife.70471

Share this article

https://doi.org/10.7554/eLife.70471

Further reading

    1. Biochemistry and Chemical Biology
    Yingjie Sun, Changheng Li ... Youngnam N Jin
    Research Article

    Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug–protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs’ mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Raji E Joseph, Thomas E Wales ... Amy H Andreotti
    Research Advance

    Inhibition of Bruton’s tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.