Evolution of sexual conflict in scorpionflies

  1. Agnieszka Soszyńska-Maj  Is a corresponding author
  2. Ewa Krzemińska  Is a corresponding author
  3. Ricardo Pérez-de la Fuente
  4. Ji-Shen Wang
  5. Krzysztof Szpila
  6. Kornelia Skibińska
  7. Katarzyna Kopeć
  8. Wieslaw Krzemiński
  1. University of Lodz, Poland
  2. Polish Academy of Sciences, Poland
  3. Oxford University, United Kingdom
  4. Dali University, China
  5. Nicolaus Copernicus University, Poland

Abstract

Sexual conflict - opposite reproductive/genetic interests between sexes - can be a significant driver of insect evolution. Scorpionflies (Insecta: Mecoptera) are models in sexual conflict research due to their large variety of mating practices, including coercive behaviour and nuptial gift provisioning. However, the role of palaeontology in sexual conflict studies remains negligible, namely due to the paucity of well-preserved fossils. Here we describe three male scorpionflies from Cretaceous and Eocene ambers. The structure of notal and postnotal organs is analysed in extant and extinct forms; a depression below the base of the notal organ in different panorpid species spatially matches the anterior fold of the female's wing. Based on disparate abdominal configurations and correlations in extant relatives, we posit that each new fossil taxon had a different mating approach along a nuptial gifting-coercive spectrum. The Eocene specimen possesses extreme female clamping abdominal armature, suggesting a degree of sexual coercion greater than in any other known scorpionfly, extinct or extant. The fossil record of abdominal modifications in male scorpionflies documents a relatively late evolution (Eocene) of long notal organs indicating oppressive behaviour toward a female during mating. Our findings reveal a wider array of mating-related morphological specialisations among extinct Panorpoidea, likely reflecting more diversified past mating strategies and behaviours in this group, and represent first steps towards gaining a deep-time perspective on the evolution of sexual conflict over mating among insects.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional information related to this paper may be requested from the authors. Investigated fossils are available in public institutions: at the Institutional Collection from the El Soplao Cave (Government of Cantabria), Celis, Cantabria, N Spain and at the collection from the Museum of the Institute of Systematics and Evolution of Animals (ISEA), Polish Academy of Sciences (PAS), Kraków, Poland.

Article and author information

Author details

  1. Agnieszka Soszyńska-Maj

    Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Lodz, Poland
    For correspondence
    agnieszka.soszynska@biol.uni.lodz.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2661-6685
  2. Ewa Krzemińska

    Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
    For correspondence
    ekrzeminska9@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Ricardo Pérez-de la Fuente

    Museum of Natural History, Oxford University, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2830-2639
  4. Ji-Shen Wang

    College of Agriculture and Biological Sciences, Dali University, Dali, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0188-0228
  5. Krzysztof Szpila

    Department of Ecology and Biogeography, Nicolaus Copernicus University, Torun, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Kornelia Skibińska

    Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Katarzyna Kopeć

    Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
    Competing interests
    The authors declare that no competing interests exist.
  8. Wieslaw Krzemiński

    Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Center, Poland (2013/09/B/NZ8/03270)

  • Agnieszka Soszyńska-Maj
  • Katarzyna Kopeć
  • Wieslaw Krzemiński

National Science Center, Poland (2016/23/B/NZ8/00936)

  • Agnieszka Soszyńska-Maj
  • Ewa Krzemińska
  • Kornelia Skibińska
  • Katarzyna Kopeć
  • Wieslaw Krzemiński

AEI/FEDER, UE (CGL2017-84419)

  • Ricardo Pérez-de la Fuente

High-level Talents, Dali University (KY2096124040)

  • Ji-Shen Wang

National Science Center, Poland (2018/31/B/NZ8/02113)

  • Krzysztof Szpila

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Lentink, University of Groningen, Netherlands

Version history

  1. Received: May 18, 2021
  2. Accepted: February 10, 2022
  3. Accepted Manuscript published: February 11, 2022 (version 1)
  4. Version of Record published: April 5, 2022 (version 2)

Copyright

© 2022, Soszyńska-Maj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,232
    views
  • 233
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agnieszka Soszyńska-Maj
  2. Ewa Krzemińska
  3. Ricardo Pérez-de la Fuente
  4. Ji-Shen Wang
  5. Krzysztof Szpila
  6. Kornelia Skibińska
  7. Katarzyna Kopeć
  8. Wieslaw Krzemiński
(2022)
Evolution of sexual conflict in scorpionflies
eLife 11:e70508.
https://doi.org/10.7554/eLife.70508

Share this article

https://doi.org/10.7554/eLife.70508

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.