Activity-dependent modulation of synapse-regulating genes in astrocytes

  1. Isabella Farhy-Tselnicker
  2. Matthew M Boisvert
  3. Hanqing Liu
  4. Cari Dowling
  5. Galina A Erikson
  6. Elena Blanco-Suarez
  7. Chen Farhy
  8. Maxim N Shokhirev
  9. Joseph R Ecker
  10. Nicola J Allen  Is a corresponding author
  1. Salk Institute for Biological Studies, United States
  2. Thomas Jefferson University, United States
  3. Sanford Burnham Prebys Medical Discovery Institute, United States
  4. The Salk Institute for Biological Studies, United States
  5. Howard Hughes Medical Institute, Salk Institute for Biological Studies, United States

Abstract

Astrocytes regulate the formation and function of neuronal synapses via multiple signals, however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually-evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development are also altered when astrocyte signaling is blunted by diminishing calcium release from astrocyte stores. Single nucleus RNA sequencing identified groups of astrocytic genes regulated by neuronal and astrocyte activity, and a cassette of genes that show layer-specific enrichment. Thus, the development of cortical circuits requires coordinated signaling between astrocytes and neurons, highlighting astrocytes as a target to manipulate in neurodevelopmental disorders.

Data availability

DATA AVAILABILITYAll data supporting the results of this study can be found in the following locations:Processed RNA sequencing data presented in Figure 1 is available in Figure 1- Source Data 1.Data presented in graphs in Figures 2-5 is available in Figure 2-5 Source Data files.Processed single nucleus RNA sequencing data presented in Figure 6 is available in Figure 6-Source Data 1.The RNA sequencing data has been deposited at GEO. Ribotag data is available at GSE161398 and glial snRNAseq at GSE163775.Processed RNA sequencing data is available in a searchable format at the following web locations:Ribotag astrocyte developmental dataset:igc1.salk.edu:3838/astrocyte_transcriptomeSingle nucleus glial cell sequencing:mouse-astro-dev.cells.ucsc.edu

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Isabella Farhy-Tselnicker

    Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3733-7120
  2. Matthew M Boisvert

    Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hanqing Liu

    Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cari Dowling

    Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Galina A Erikson

    Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elena Blanco-Suarez

    Neuroscience, Thomas Jefferson University, PHILADELPHIA, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2131-6376
  7. Chen Farhy

    Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6160-3479
  8. Maxim N Shokhirev

    The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joseph R Ecker

    Plant Biology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5799-5895
  10. Nicola J Allen

    Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    nallen@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7542-5930

Funding

National Institutes of Health (NS105742)

  • Nicola J Allen

National Institutes of Health (NS089791)

  • Nicola J Allen

Pew Charitable Trusts

  • Nicola J Allen

Chan Zuckerberg Initiative (2018-191894)

  • Nicola J Allen

Howard Hughes Medical Institute

  • Joseph R Ecker

National Institutes of Health (NIH NCI CCSG P30 014195)

  • Maxim N Shokhirev

Hearst Foundations

  • Nicola J Allen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal work was approved by the Salk Institute Institutional Animal Care and Use Committee (IACUC) protocol 12-00023.

Copyright

© 2021, Farhy-Tselnicker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,331
    views
  • 1,057
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isabella Farhy-Tselnicker
  2. Matthew M Boisvert
  3. Hanqing Liu
  4. Cari Dowling
  5. Galina A Erikson
  6. Elena Blanco-Suarez
  7. Chen Farhy
  8. Maxim N Shokhirev
  9. Joseph R Ecker
  10. Nicola J Allen
(2021)
Activity-dependent modulation of synapse-regulating genes in astrocytes
eLife 10:e70514.
https://doi.org/10.7554/eLife.70514

Share this article

https://doi.org/10.7554/eLife.70514

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.