Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories

  1. DeElegant Robinson
  2. Mike Place
  3. James Hose
  4. Adam Jochem
  5. Audrey P Gasch  Is a corresponding author
  1. University of Wisconsin-Madison, United States

Abstract

Copy number variation (CNV) through gene or chromosome amplification provides a route for rapid phenotypic variation and supports long-term evolution of gene functions. Although the evolutionary importance of CNV is known, little is understood about how genetic background influences CNV tolerance. Here, we measured fitness costs of over 4,000 over-expressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.

Data availability

Barcode sequencing data are available in the Short Read Archive under accession number GSE171586. RNA-Seq data are available in GEO accession number GSE171585.

The following data sets were generated

Article and author information

Author details

  1. DeElegant Robinson

    Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mike Place

    Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James Hose

    Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam Jochem

    Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Audrey P Gasch

    Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, United States
    For correspondence
    agasch@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8182-257X

Funding

National Cancer Institute (R01CA229532)

  • James Hose
  • Adam Jochem
  • Audrey P Gasch

U.S. Department of Energy (DE-SC0018409)

  • Mike Place
  • Audrey P Gasch

National Institutes of Health (GT32GM007133)

  • DeElegant Robinson

National Human Genome Research Institute (5T32HG002760)

  • DeElegant Robinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kevin J Verstrepen, VIB-KU Leuven Center for Microbiology, Belgium

Version history

  1. Preprint posted: May 19, 2021 (view preprint)
  2. Received: May 21, 2021
  3. Accepted: July 30, 2021
  4. Accepted Manuscript published: August 2, 2021 (version 1)
  5. Version of Record published: August 9, 2021 (version 2)

Copyright

© 2021, Robinson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,806
    views
  • 164
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. DeElegant Robinson
  2. Mike Place
  3. James Hose
  4. Adam Jochem
  5. Audrey P Gasch
(2021)
Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories
eLife 10:e70564.
https://doi.org/10.7554/eLife.70564

Share this article

https://doi.org/10.7554/eLife.70564

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.