Distinct signatures of calcium activity in brain mural cells

  1. Chaim Glück  Is a corresponding author
  2. Kim David Ferrari
  3. Noemi Binini
  4. Annika Keller
  5. Aiman S Saab
  6. Jillian L Stobart
  7. Bruno Weber  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Max-Planck-Institute for Experimental Medicine, Germany
  3. College of Pharmacy, Canada

Abstract

Pericytes have been implicated in various neuropathologies, yet, little is known about their function and signaling pathways in health. Here, we characterized calcium dynamics of cortical mural cells in anesthetized or awake Pdgfrb-CreERT2;Rosa26 mice and in acute brain slices. Smooth muscle cells (SMCs) and ensheathing pericytes (EPs), also named as terminal vascular SMCs, revealed similar calcium dynamics in vivo. In contrast, calcium signals in capillary pericytes (CPs) were irregular, higher in frequency and occurred in cellular microdomains. In the absence of the vessel constricting agent U46619 in acute slices, SMCs and EPs revealed only sparse calcium signals whereas CPs retained their spontaneous calcium activity. Interestingly, chemogenetic activation of neurons in vivo and acute elevations of extracellular potassium in brain slices strongly decreased calcium activity in CPs. We propose that neuronal activation and an extracellular increase in potassium suppress calcium activity in CPs, likely mediated by Kir2.2 and KATP channels.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 5 and 6.

Article and author information

Author details

  1. Chaim Glück

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    For correspondence
    chaim.glueck@uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8754-9965
  2. Kim David Ferrari

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7565-1276
  3. Noemi Binini

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Annika Keller

    Dept. of Neurosurgery, University of Zurich, 8952/Schlieren, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1466-3633
  5. Aiman S Saab

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jillian L Stobart

    Rady Faculty of Health Sciences, College of Pharmacy, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruno Weber

    Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
    For correspondence
    bweber@pharma.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9089-0689

Ethics

Animal experimentation: All animal experiments were approved by the local Cantonal Veterinary Office inZürich (license ZH 169/17) and conformed to the guidelines of the Swiss Animal Protection Law, Swiss Veterinary Office, Canton of Zürich(Animal Welfare Act of 16 December 2005 and Animal Protection Ordinance of 23 April 2008). Every effort was made to minimize suffering andconform to the 3Rs principles.

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Publication history

  1. Received: May 21, 2021
  2. Accepted: June 15, 2021
  3. Accepted Manuscript published: July 6, 2021 (version 1)
  4. Accepted Manuscript updated: July 16, 2021 (version 2)
  5. Version of Record published: July 21, 2021 (version 3)

Copyright

© 2021, Glück et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,464
    Page views
  • 220
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaim Glück
  2. Kim David Ferrari
  3. Noemi Binini
  4. Annika Keller
  5. Aiman S Saab
  6. Jillian L Stobart
  7. Bruno Weber
(2021)
Distinct signatures of calcium activity in brain mural cells
eLife 10:e70591.
https://doi.org/10.7554/eLife.70591

Further reading

    1. Neuroscience
    Liqiang Chen et al.
    Short Report

    The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.