1. Neuroscience
Download icon

Distinct signatures of calcium activity in brain mural cells

  1. Chaim Glück  Is a corresponding author
  2. Kim David Ferrari
  3. Noemi Binini
  4. Annika Keller
  5. Aiman S Saab
  6. Jillian L Stobart
  7. Bruno Weber  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Max-Planck-Institute for Experimental Medicine, Germany
  3. College of Pharmacy, Canada
Research Article
  • Cited 1
  • Views 1,077
  • Annotations
Cite this article as: eLife 2021;10:e70591 doi: 10.7554/eLife.70591

Abstract

Pericytes have been implicated in various neuropathologies, yet, little is known about their function and signaling pathways in health. Here, we characterized calcium dynamics of cortical mural cells in anesthetized or awake Pdgfrb-CreERT2;Rosa26<LSL-GCaMP6s> mice and in acute brain slices. Smooth muscle cells (SMCs) and ensheathing pericytes (EPs), also named as terminal vascular SMCs, revealed similar calcium dynamics in vivo. In contrast, calcium signals in capillary pericytes (CPs) were irregular, higher in frequency and occurred in cellular microdomains. In the absence of the vessel constricting agent U46619 in acute slices, SMCs and EPs revealed only sparse calcium signals whereas CPs retained their spontaneous calcium activity. Interestingly, chemogenetic activation of neurons in vivo and acute elevations of extracellular potassium in brain slices strongly decreased calcium activity in CPs. We propose that neuronal activation and an extracellular increase in potassium suppress calcium activity in CPs, likely mediated by Kir2.2 and KATP channels.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 5 and 6.

Article and author information

Author details

  1. Chaim Glück

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    For correspondence
    chaim.glueck@uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8754-9965
  2. Kim David Ferrari

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7565-1276
  3. Noemi Binini

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Annika Keller

    Dept. of Neurosurgery, University of Zurich, 8952/Schlieren, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1466-3633
  5. Aiman S Saab

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jillian L Stobart

    Rady Faculty of Health Sciences, College of Pharmacy, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruno Weber

    Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
    For correspondence
    bweber@pharma.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9089-0689

Ethics

Animal experimentation: All animal experiments were approved by the local Cantonal Veterinary Office inZürich (license ZH 169/17) and conformed to the guidelines of the Swiss Animal Protection Law, Swiss Veterinary Office, Canton of Zürich(Animal Welfare Act of 16 December 2005 and Animal Protection Ordinance of 23 April 2008). Every effort was made to minimize suffering andconform to the 3Rs principles.

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Publication history

  1. Received: May 21, 2021
  2. Accepted: June 15, 2021
  3. Accepted Manuscript published: July 6, 2021 (version 1)
  4. Accepted Manuscript updated: July 16, 2021 (version 2)
  5. Version of Record published: July 21, 2021 (version 3)

Copyright

© 2021, Glück et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,077
    Page views
  • 159
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Giacomo Ariani et al.
    Research Article Updated

    Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural processes that occur in human primary motor and somatosensory cortex during planning, and how they relate to those during movement execution, remain poorly understood. Here, we used 7T functional magnetic resonance imaging and a delayed movement paradigm to study single finger movement planning and execution. The inclusion of no-go trials and variable delays allowed us to separate what are typically overlapping planning and execution brain responses. Although our univariate results show widespread deactivation during finger planning, multivariate pattern analysis revealed finger-specific activity patterns in contralateral primary somatosensory cortex (S1), which predicted the planned finger action. Surprisingly, these activity patterns were as informative as those found in contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the detected information was an artifact of subthreshold movements during the preparatory delay. Furthermore, we observed that finger-specific activity patterns during planning were highly correlated to those during execution. These findings reveal that motor planning activates the specific S1 and M1 circuits that are engaged during the execution of a finger press, while activity in both regions is overall suppressed. We propose that preparatory states in S1 may improve movement control through changes in sensory processing or via direct influence of spinal motor neurons.

    1. Neuroscience
    Josephine Henke et al.
    Research Article Updated

    As we interact with the external world, we judge magnitudes from sensory information. The estimation of magnitudes has been characterized in primates, yet it is largely unexplored in nonprimate species. Here, we use time interval reproduction to study rodent behavior and its neural correlates in the context of magnitude estimation. We show that gerbils display primate-like magnitude estimation characteristics in time reproduction. Most prominently their behavioral responses show a systematic overestimation of small stimuli and an underestimation of large stimuli, often referred to as regression effect. We investigated the underlying neural mechanisms by recording from medial prefrontal cortex and show that the majority of neurons respond either during the measurement or the reproduction of a time interval. Cells that are active during both phases display distinct response patterns. We categorize the neural responses into multiple types and demonstrate that only populations with mixed responses can encode the bias of the regression effect. These results help unveil the organizing neural principles of time reproduction and perhaps magnitude estimation in general.