Distinct signatures of calcium activity in brain mural cells

  1. Chaim Glück  Is a corresponding author
  2. Kim David Ferrari
  3. Noemi Binini
  4. Annika Keller
  5. Aiman S Saab
  6. Jillian L Stobart
  7. Bruno Weber  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Max-Planck-Institute for Experimental Medicine, Germany
  3. College of Pharmacy, Canada

Abstract

Pericytes have been implicated in various neuropathologies, yet, little is known about their function and signaling pathways in health. Here, we characterized calcium dynamics of cortical mural cells in anesthetized or awake Pdgfrb-CreERT2;Rosa26<LSL-GCaMP6s> mice and in acute brain slices. Smooth muscle cells (SMCs) and ensheathing pericytes (EPs), also named as terminal vascular SMCs, revealed similar calcium dynamics in vivo. In contrast, calcium signals in capillary pericytes (CPs) were irregular, higher in frequency and occurred in cellular microdomains. In the absence of the vessel constricting agent U46619 in acute slices, SMCs and EPs revealed only sparse calcium signals whereas CPs retained their spontaneous calcium activity. Interestingly, chemogenetic activation of neurons in vivo and acute elevations of extracellular potassium in brain slices strongly decreased calcium activity in CPs. We propose that neuronal activation and an extracellular increase in potassium suppress calcium activity in CPs, likely mediated by Kir2.2 and KATP channels.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, 5 and 6.

Article and author information

Author details

  1. Chaim Glück

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    For correspondence
    chaim.glueck@uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8754-9965
  2. Kim David Ferrari

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7565-1276
  3. Noemi Binini

    Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Annika Keller

    Dept. of Neurosurgery, University of Zurich, 8952/Schlieren, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1466-3633
  5. Aiman S Saab

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jillian L Stobart

    Rady Faculty of Health Sciences, College of Pharmacy, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruno Weber

    Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
    For correspondence
    bweber@pharma.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9089-0689

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Ethics

Animal experimentation: All animal experiments were approved by the local Cantonal Veterinary Office inZürich (license ZH 169/17) and conformed to the guidelines of the Swiss Animal Protection Law, Swiss Veterinary Office, Canton of Zürich(Animal Welfare Act of 16 December 2005 and Animal Protection Ordinance of 23 April 2008). Every effort was made to minimize suffering andconform to the 3Rs principles.

Version history

  1. Received: May 21, 2021
  2. Accepted: June 15, 2021
  3. Accepted Manuscript published: July 6, 2021 (version 1)
  4. Accepted Manuscript updated: July 16, 2021 (version 2)
  5. Version of Record published: July 21, 2021 (version 3)

Copyright

© 2021, Glück et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,636
    views
  • 355
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaim Glück
  2. Kim David Ferrari
  3. Noemi Binini
  4. Annika Keller
  5. Aiman S Saab
  6. Jillian L Stobart
  7. Bruno Weber
(2021)
Distinct signatures of calcium activity in brain mural cells
eLife 10:e70591.
https://doi.org/10.7554/eLife.70591

Share this article

https://doi.org/10.7554/eLife.70591

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.