Selective androgen receptor degrader (SARD) to overcome antiandrogen resistance in castration-resistant prostate cancer

  1. Meng Wu
  2. Rongyu Zhang
  3. Zixiong Zhang
  4. Ning Zhang
  5. Chenfan Li
  6. Yongli Xie
  7. Haoran Xia
  8. Fangjiao Huang
  9. Ruoying Zhang
  10. Ming Liu
  11. Xiaoyu Li
  12. Shan Cen  Is a corresponding author
  13. Jinming Zhou  Is a corresponding author
  1. Chinese Academy of Medical Sciences & Peking Union Medical College, China
  2. Zhejiang Normal University, China
  3. Beijing Hospital, China

Abstract

In patients with castration-resistant prostate cancer (CRPC), clinical resistances such as androgen receptor (AR) mutation, AR overexpression, and AR splice variants (ARVs) limit the effectiveness of second-generation antiandrogens (SGAs). Several strategies have been implemented to develop novel antiandrogens to circumvent the occurring resistance. Here, we found and identified a bifunctional small molecule Z15, which is both an effective AR antagonist and a selective AR degrader. Z15 could directly interact with the ligand-binding domain (LBD) and activation function-1 region of AR, and promote AR degradation through the proteasome pathway. In vitro and in vivo studies showed that Z15 efficiently suppressed AR, AR mutants and ARVs transcription activity, downregulated mRNA and protein levels of AR downstream target genes, thereby overcoming AR LBD mutations, AR amplification, and ARVs-induced SGAs resistance in CRPC. In conclusion, our data illustrate the synergistic importance of AR antagonism and degradation in advanced prostate cancer treatment.

Data availability

Data Availability: All data generated or analysed during this study are included in the manuscript and supporting source files. The RNA sequence data could be found in the following link: https://bigd.big.ac.cn/gsa-human/browse/HRA000921. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD035721. PRIDE - Proteomics Identification Database (ebi.ac.uk).

The following data sets were generated

Article and author information

Author details

  1. Meng Wu

    Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Rongyu Zhang

    Department of Chemistry, Zhejiang Normal University, Jinhua, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Zixiong Zhang

    Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ning Zhang

    Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chenfan Li

    Department of Chemistry, Zhejiang Normal University, Jinhua, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yongli Xie

    Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Haoran Xia

    Department of Urology, Beijing Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Fangjiao Huang

    Department of Chemistry, Zhejiang Normal University, Jinhua, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ruoying Zhang

    Department of Chemistry, Zhejiang Normal University, Jinhua, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Ming Liu

    Department of Urology, Beijing Hospital, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiaoyu Li

    Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Shan Cen

    Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
    For correspondence
    shancen@imb.pumc.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  13. Jinming Zhou

    Department of Chemistry, Zhejiang Normal University, Jinhua, China
    For correspondence
    zhoujinming@zjnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1610-5061

Funding

National Natural Science Foundation of China (22077115,81672559,81311120299)

  • Jinming Zhou

National Natural Science Foundation of China (82104231)

  • Meng Wu

China Postdoctoral Science Foundation (2021M700504)

  • Meng Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wafik S El-Deiry, Brown University, United States

Ethics

Animal experimentation: All animal experiments have been approved by the Ethics Committee of Nanjing Lambda Pharmaceutical Co.,Ltd (Reference number: IACUC-20210902).

Version history

  1. Received: May 26, 2021
  2. Accepted: January 18, 2023
  3. Accepted Manuscript published: January 19, 2023 (version 1)
  4. Version of Record published: February 6, 2023 (version 2)

Copyright

© 2023, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,322
    views
  • 499
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meng Wu
  2. Rongyu Zhang
  3. Zixiong Zhang
  4. Ning Zhang
  5. Chenfan Li
  6. Yongli Xie
  7. Haoran Xia
  8. Fangjiao Huang
  9. Ruoying Zhang
  10. Ming Liu
  11. Xiaoyu Li
  12. Shan Cen
  13. Jinming Zhou
(2023)
Selective androgen receptor degrader (SARD) to overcome antiandrogen resistance in castration-resistant prostate cancer
eLife 12:e70700.
https://doi.org/10.7554/eLife.70700

Share this article

https://doi.org/10.7554/eLife.70700

Further reading

    1. Medicine
    Filipa M Lopes, Celine Grenier ... Neil A Roberts
    Research Article

    Rare early-onset lower urinary tract disorders include defects of functional maturation of the bladder. Current treatments do not target the primary pathobiology of these diseases. Some have a monogenic basis, such as urofacial, or Ochoa, syndrome (UFS). Here, the bladder does not empty fully because of incomplete relaxation of its outflow tract, and subsequent urosepsis can cause kidney failure. UFS is associated with biallelic variants of HPSE2, encoding heparanase-2. This protein is detected in pelvic ganglia, autonomic relay stations that innervate the bladder and control voiding. Bladder outflow tracts of Hpse2 mutant mice display impaired neurogenic relaxation. We hypothesized that HPSE2 gene transfer soon after birth would ameliorate this defect and explored an adeno-associated viral (AAV) vector-based approach. AAV9/HPSE2, carrying human HPSE2 driven by CAG, was administered intravenously into neonatal mice. In the third postnatal week, transgene transduction and expression were sought, and ex vivo myography was undertaken to measure bladder function. In mice administered AAV9/HPSE2, the viral genome was detected in pelvic ganglia. Human HPSE2 was expressed and heparanase-2 became detectable in pelvic ganglia of treated mutant mice. On autopsy, wild-type mice had empty bladders, whereas bladders were uniformly distended in mutant mice, a defect ameliorated by AAV9/HPSE2 treatment. Therapeutically, AAV9/HPSE2 significantly ameliorated impaired neurogenic relaxation of Hpse2 mutant bladder outflow tracts. Impaired neurogenic contractility of mutant detrusor smooth muscle was also significantly improved. These results constitute first steps towards curing UFS, a clinically devastating genetic disease featuring a bladder autonomic neuropathy.

    1. Medicine
    Zhenbang Ye, Ning Huang ... Wenting Huang
    Research Article

    Background:

    Diffuse large B-cell lymphoma (DLBCL) is the predominant type of malignant B-cell lymphoma. Although various treatments have been developed, the limited efficacy calls for more and further exploration of its characteristics.

    Methods:

    Datasets from the Gene Expression Omnibus (GEO) database were used for identifying the tumor purity of DLBCL. Survival analysis was employed for analyzing the prognosis of DLBCL patients. Immunohistochemistry was conducted to detect the important factors that influenced the prognosis. Drug-sensitive prediction was performed to evaluate the value of the model.

    Results:

    VCAN, CD3G, and C1QB were identified as three key genes that impacted the outcome of DLBCL patients both in GEO datasets and samples from our center. Among them, VCAN and CD3G+ T cells were correlated with favorable prognosis, and C1QB was correlated with worse prognosis. The ratio of CD68 + macrophages and CD8 + T cells was associated with better prognosis. In addition, CD3G+T cells ratio was significantly correlated with CD68 + macrophages, CD4 + T cells, and CD8 +T cells ratio, indicating it could play an important role in the anti-tumor immunity in DLBCL. The riskScore model constructed based on the RNASeq data of VCAN, C1QB, and CD3G work well in predicting the prognosis and drug sensitivity.

    Conclusions:

    VCAN, CD3G, and C1QB were three key genes that influenced the tumor purity of DLBCL, and could also exert certain impact on drug sensitivity and prognosis of DLBCL patients.

    Funding:

    This work is supported by the Shenzhen High-level Hospital Construction Fund and CAMS Innovation Fund for Medical Sciences (CIFMS) (2022-I2M-C&T-B-062).