Diverse mating phenotypes impact the spread of wtf meiotic drivers in Schizosaccharomyces pombe

Abstract

Meiotic drivers are genetic elements that break Mendel's law of segregation to be transmitted into more than half of the offspring produced by a heterozygote. The success of a driver relies on outcrossing (mating between individuals from distinct lineages) because drivers gain their advantage in heterozygotes. It is, therefore, curious that Schizosaccharomyces pombe, a species reported to rarely outcross, harbors many meiotic drivers. To address this paradox, we measured mating phenotypes in S. pombe natural isolates. We found that the propensity for cells from distinct clonal lineages to mate varies between natural isolates and can be affected both by cell density and by the available sexual partners. Additionally, we found that the observed levels of preferential mating between cells from the same clonal lineage can slow, but not prevent, the spread of a wtf meiotic driver in the absence of additional fitness costs linked to the driver. These analyses reveal parameters critical to understanding the evolution of S. pombe and help explain the success of meiotic drivers in this species.

Data availability

Original data underlying this manuscript can be accessed from the Stowers Original Data Repository at http://www.stowers.org/research/publications/libpbxxxx.Base called reads are available as fastq files at the SRA under project accession number PRJNA732453.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. José Fabricio López Hernández

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  2. Rachel M Helston

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  3. Jeffrey J Lange

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  4. R Blake Billmyre

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4866-3711
  5. Samantha H Schaffner

    Kenyon College, Gambier, United States
    Competing interests
    No competing interests declared.
  6. Michael T Eickbush

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9057-9156
  7. Scott McCroskey

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  8. Sarah E Zanders

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    sez@stowers.org
    Competing interests
    Sarah E Zanders, Inventor on patent application 834 serial 62/491,107 based on wtf killers..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1867-986X

Funding

Stowers Institute for Medical Research (NA)

  • Sarah E Zanders

National Institute of General Medical Sciences (DP2GM132936)

  • Sarah E Zanders

Searle Scholars Program (NA)

  • Sarah E Zanders

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tatiana Giraud, Université Paris-Sud, France

Version history

  1. Preprint posted: May 29, 2021 (view preprint)
  2. Received: May 29, 2021
  3. Accepted: December 10, 2021
  4. Accepted Manuscript published: December 13, 2021 (version 1)
  5. Version of Record published: January 25, 2022 (version 2)

Copyright

© 2021, López Hernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,587
    Page views
  • 187
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. José Fabricio López Hernández
  2. Rachel M Helston
  3. Jeffrey J Lange
  4. R Blake Billmyre
  5. Samantha H Schaffner
  6. Michael T Eickbush
  7. Scott McCroskey
  8. Sarah E Zanders
(2021)
Diverse mating phenotypes impact the spread of wtf meiotic drivers in Schizosaccharomyces pombe
eLife 10:e70812.
https://doi.org/10.7554/eLife.70812

Share this article

https://doi.org/10.7554/eLife.70812

Further reading

    1. Evolutionary Biology
    Zhiliang Zhang, Zhifei Zhang ... Guoxiang Li
    Research Article

    Biologically-controlled mineralization producing organic-inorganic composites (hard skeletons) by metazoan biomineralizers has been an evolutionary innovation since the earliest Cambrian. Among them, linguliform brachiopods are one of the key invertebrates that secrete calcium phosphate minerals to build their shells. One of the most distinct shell structures is the organo-phosphatic cylindrical column exclusive to phosphatic-shelled brachiopods, including both crown and stem groups. However, the complexity, diversity, and biomineralization processes of these microscopic columns are far from clear in brachiopod ancestors. Here, exquisitely well-preserved columnar shell ultrastructures are reported for the first time in the earliest eoobolids Latusobolus xiaoyangbaensis gen. et sp. nov. and Eoobolus acutulus sp. nov. from the Cambrian Series 2 Shuijingtuo Formation of South China. The hierarchical shell architectures, epithelial cell moulds, and the shape and size of cylindrical columns are scrutinised in these new species. Their calcium phosphate-based biomineralized shells are mainly composed of stacked sandwich columnar units. The secretion and construction of the stacked sandwich model of columnar architecture, which played a significant role in the evolution of linguliforms, is highly biologically controlled and organic-matrix mediated. Furthermore, a continuous transformation of anatomic features resulting from the growth of diverse columnar shells is revealed between Eoobolidae, Lingulellotretidae, and Acrotretida, shedding new light on the evolutionary growth and adaptive innovation of biomineralized columnar architecture among early phosphatic-shelled brachiopods during the Cambrian explosion.

    1. Developmental Biology
    2. Evolutionary Biology
    Eman Hijaze, Tsvia Gildor ... Smadar Ben-Tabou de-Leon
    Research Article

    Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates’ biomineralizing cells, yet, little is known on ROCK’s role in invertebrates’ biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.