Rapid and sensitive detection of SARS-CoV-2 infection using quantitative peptide enrichment LC-MS analysis

  1. Andreas Hober
  2. Khue Hua Tran-Minh
  3. Dominic Foley
  4. Thomas McDonald
  5. Johannes PC Vissers
  6. Rebecca Pattison
  7. Samantha Ferries
  8. Sigurd Hermansson
  9. Ingvar Betner
  10. Mathias Uhlén
  11. Morteza Razavi
  12. Richard Yip
  13. Matthew E Pope
  14. Terry W Pearson
  15. Leigh N Andersson
  16. Amy Bartlett
  17. Lisa Calton
  18. Jessica J Alm
  19. Lars Engstrand
  20. Fredrik Edfors  Is a corresponding author
  1. Science for Life Laboratory, Sweden
  2. The Royal Institute of Technology, Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and Health, Sweden
  3. Waters Corporation, United Kingdom
  4. SISCAPA Assay Technologies, Inc, Canada
  5. Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology & National Pandemic Center, Karolinska Institutet, Sweden
  6. Microbiology, Tumour and Cell Biology, Karolinska Institutet, Sweden
4 figures, 2 tables and 2 additional files

Figures

Experimental workflow for immuno-affinity peptide (stable isotope labeled [SIL] standards and capture by anti-peptide antibodies [SISCAPA]) enrichment liquid chromatography-mass spectrometry (LC-MS) of nucleocapsid protein (NCAP) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides.

Swab sample extracts were subjected to tryptic digestion, SIL standards added to the tryptic digest solution, and magnetic beads coupled with specific anti-peptide antibodies incubated to allow binding of the peptides. Unbound peptides are removed and the target peptides eluted and measured using multiple reaction monitoring (MRM) analysis with LC-MS.

Figure 2 with 4 supplements
Multiple reaction monitoring (MRM) chromatograms of antibody enriched nucleocapsid protein (NCAP) AYNVTQAFGR peptide.

Quantifier, qualifier, and stable isotope labeled (SIL) internal standard peptide chromatograms spiked at the lower limit of quantification (3 amol/µl) (A). Calibration curve of the AYNVTQAFGR peptide based on enriched recombinant NCAP digest, spiked with a constant amount of SIL peptide (B). Two representative intensity-scaled MRM chromatograms of positive (mean cycle threshold [Ct] 31) (C) and negative (blank) (D) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) swab samples, respectively, normalized to the most abundant shared MRM transition. Intensity-scaled SIL internal standard peptide MRM chromatograms of positive (E) and negative (F) SARS-CoV-2 swab samples.

Figure 2—figure supplement 1
Peak area (multiple reaction monitoring [MRM] sensitivity) of stable isotope labeled (SIL) (13C615N2 C-terminal K or 13C615N4 C-terminal R labeled) nucleocapsid protein (NCAP) peptides as function of peptide and detergent (CHAPS) concentration.
Figure 2—figure supplement 2
Calibration curve for ADETQALPQR over the range 3–50,000 amol/µl.
Figure 2—figure supplement 3
Calibration curve for NPANNAAIVLQLPQGTTLPK over the range 3–50,000 amol/µl.
Figure 2—figure supplement 4
Calibration curve for DGIIWVATEGALNTPK over the range 3–2000 amol/µl.
Liquid chromatography-mass spectrometry (LC-MS) (log2 quantifier response) vs. real-time polymerase chain reaction (RT-PCR) (cycle threshold [Ct]) read-out correlation with linear regression (A) and quartiles distribution of the LC-MS results (B).

Color labeling is based on RT-PCR diagnoses; blue = positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); gray = not detected (no light signals) or inconclusively quantified (single transition) by LC-MS.

Output class (liquid chromatography-mass spectrometry [LC-MS]) vs. target class (real-time polymerase chain reaction [RT-PCR]) contingency matrix, used to calculate the positive percent agreement (PPA) and negative percent agreement (NPA) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immuno-affinity peptide enrichment LC-MS method (A).

The LC-multiple reaction monitoring (MRM)/MS performance is based on RT-PCR results obtained from 48 positive and 308 negative samples. (B) The LC-MRM/MS performance based on all positive samples with an RT-PCR results below cycle threshold (Ct) 30 (limit of detection [LOD] for the LC-MRM/MS) and 308 negative samples.

Tables

Table 1
Intra- and inter-day method precision (n = 5) when monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NCAP) peptide AYNVTQAFGR using immuno-affinity peptide enrichment liquid chromatography-mass spectrometry (LC-MS) (multiple reaction monitoring [MRM]).
Precision (% CV)
Intra (concentration [amol/μl])Inter (concentration [amol/lμl])
31040025,00031040025,000
Peptide-spiked PBS12.011.15.85.2
NCAP-spiked PBS18.93.94.86.4
Peptide-spiked VTM12.56.82.43.015.510.26.84.7
NCAP-spiked VTM13.210.22.42.911.617.618.511.1
  1. –, not tested.

Table 2
Multiple reaction monitoring (MRM) transitions and mass spectrometry (MS) method details target nucleocapsid protein (NCAP) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides.
PeptideMRMMRM transition typeCone voltage (V)Collision energy (V)Retention time (min)Scan window (min)
ADETQALPQR564.8 > 400.2Quantifier35191.090.6–1.4
564.8 > 584.4Qualifier3520
564.8 > 712.4Qualifier3524
569.8 > 410.2SIL3519
AYNVTQAFGR563.8 > 679.4Quantifier35192.492.0–3.0
563.8 > 578.3Qualifier3518
563.8 > 892.5Qualifier3519
568.8 > 689.4SIL3519
DGIIWVATEGALNTPK562.3 > 643.4Quantifier35144.123.6–4.8
562.3 > 572.3Qualifier3518
562.3 > 700.4Qualifier3514
565.2 > 708.4SIL3514
NPANNAAIVLQLPQGTTLPK687.4 > 841.5Quantifier35183.923.6–4.2
687.4 > 766.4Qualifier3523
687.4 > 865.5Qualifier3523
690.4 > 849.5SIL3518

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas Hober
  2. Khue Hua Tran-Minh
  3. Dominic Foley
  4. Thomas McDonald
  5. Johannes PC Vissers
  6. Rebecca Pattison
  7. Samantha Ferries
  8. Sigurd Hermansson
  9. Ingvar Betner
  10. Mathias Uhlén
  11. Morteza Razavi
  12. Richard Yip
  13. Matthew E Pope
  14. Terry W Pearson
  15. Leigh N Andersson
  16. Amy Bartlett
  17. Lisa Calton
  18. Jessica J Alm
  19. Lars Engstrand
  20. Fredrik Edfors
(2021)
Rapid and sensitive detection of SARS-CoV-2 infection using quantitative peptide enrichment LC-MS analysis
eLife 10:e70843.
https://doi.org/10.7554/eLife.70843