Respiration aligns perception with neural excitability
Abstract
Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behaviour. We acquired respiration and human magnetoencephalography (MEG) data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8 - 13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected vs undetected targets underscored the behavioural benefits of heightened excitability. Notably, respiration-locked excitability changes were maximised at a respiration phase lag of around -30° and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.
Data availability
The anonymised data supporting the findings of this study are openly available from on the Open Science Framework (https://osf.io/ajuzh/).
Article and author information
Author details
Funding
Interdisciplinary Center for Clinical Research, University of Münster (Gro3/001/19)
- Joachim Gross
Deutsche Forschungsgemeinschaft (GR2024/5-1)
- Joachim Gross
Deutsche Forschungsgemeinschaft (BU2400/9-1)
- Niko A Busch
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All participants gave written informed consent prior to all experimental procedures. The study was approved by the local ethics committee of the University of Muenster (approval ID 2018-068-f-S) and complied with the Declaration of Helsinki.
Copyright
© 2021, Kluger et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,568
- views
-
- 691
- downloads
-
- 111
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 111
- citations for umbrella DOI https://doi.org/10.7554/eLife.70907